现代信号处理笔记 3 估计误差下界

现代数字信号处理1 2019 张颢 06 第三讲1 现代数字信号处理1 - YouTube


目录 ​​​​​​​


完备统计

定义 

Lehmam-Scheffe Theorem

误差估计下界(Cramer-Rao Lower Bound)

 一个例子

第一步:写出模型

 第二步:求log

 第三步:求两次导数

第四步:求Fisher Information和Lower Bound

 另一个例子:讨论下界能否达到

 另一种下界推算方法

一个例子(高斯噪声,回波延时估计)


假设样本已经在手里了,且i.i.d,希望用这些样本构成一个分布,求未知参数,这个叫参数化模型。求位置参数就形成了“估计”。估计是信号处理的结果,希望尽可能接近我们想要的参数,因此想要找到最小误差的估计,这里误差采用的是均方误差。而且需要找到对于所有数据都适用的估计uniform。并且希望估计具有无偏性,也就是最小方差无偏估计(Minimum Variance Unbiased Error,MVUE)。

如何找到最小方差?Rao-Blackwell Procedure,形成新的估计,比原有的估计方差要小。也就是条件期望。

这个小?有没有尽头?这是本节课的需求。

完备统计

定义 

Complete Statistics:

一个统计T(一个依赖样本的函数)是完备的,指的是这个统计内已经不包含任何与参数θ 无关的信息。就好比一个人是完备的,一块肥肉都没有,脂肪含量0%。一般只存在于纸面上,不太可能在现实中出现,但是这是我们的目标,我们的估计最好可以做到完备估计。

举了个切肥肉的例子15:00,不理解。

Lehmam-Scheffe Theorem

假定S是一个统计, ,构造一个新的统计T,这个T是充分且完备的估计:

这个估计有理论上的最小方差。

任取一个估计

验证:

  1. 接下来用完备性说明theta*和S*是一回事,因为两个都是无偏估计,所以

       是T的一个函数。

       所以 一定是MVUE。

误差估计下界(Cramer-Rao Lower Bound)

需要正则化条件,但是这里我们默认成立。

Lower Bound of Estimation Error但未必是下确界。

Sigma确定。

图1 模型的胖瘦
图2 下确界示意图

红色会估计的更准确,因为方差小(胖瘦)。但是用曲率(Curvature,内接圆的半径的倒数)描述更为准确,也就是曲线顶点的曲率要大。曲率一定是跟二阶导数有关的。

将随机变量变成正常的。

一阶导数是变化率,跟\theta变化的快慢,变化的越快,越相关,\theta稍微一动,统计和数据会有巨大变化,参数与采样越依赖(我们希望发生这样的事情)。本质上关注的是绝对值,但是绝对值处理不方便,所以要平方一下。

估计的下界到底在哪里?先看几个基本事实

注意是对x的积分。

(积分肯定是1,所以微分肯定是0,我们是工科院校,所以不要在意交换积分顺序,实际上是需要条件的,但是我们假设想要的都有。)

进而,有,

使用柯西不等式,线性代数中有一个内积

存在对成性和非负性。还具有双线性(Bilinear):

考察\mathbb{R}_n空间的内积

如果我的线性空间是平方可积的函数的话,

Cauchy-Schwarz是内积最重要的性质:

含义非常深刻,绝不仅仅是线性空间的一个几何上的概念,在物理上也有,测不准原理本质上就是柯西施瓦兹不等式。证明:

则 

和一阶导数比较像,因为log是单调的,所以不改变什么。
越大越低。这就是著名的Cramer-Rao Lower Bound. (Rao-Blackwell还是之前那个印度学者)

I就是Fisher Information

估计本身是由下界的,跟统计方法有关。

我们对于二阶导数的感觉也是对的。






 一个例子

计算Fisher Information

第一步:写出模型

Joint Distrubution(Model)

 第二步:求log

 第三步:求两次导数

第四步:求Fisher Information和Lower Bound

 可以,柯拉梅洛界就是,如果一个估计是无偏的,则其方差

 另一个例子:讨论下界能否达到

这个下界能否达到?当然可以,求平均

 有效(Efficient)估计是指可以达到CRLB的估计。有兴趣可以了解一下Fibre Bundle杨振宁的工作。

 另一种下界推算方法

柯西不等式在随机变量上的形式:

这里把相关当作内积,线性、非负性、双线性

因此,

 这还不是下界,因为右端和\hat{\theta}还有关系。使用一个恰当的\Phi,使得右端与估计无关。

现在计算


则(1)有

​​​​​CRLB的小变种,冲着X的某个函数去考虑

一个例子(高斯噪声,回波延时估计)

 假定\bar{X}_k是采样数据,由两部分构成,一部分是\theta,参数,我要估计的东西,S_k是接收到的信号,具有一定的形式(雷达声纳导航等),用CRLB写paper非常容易发表,显得很理论,一个形式一篇文章。噪声一般是高斯的,97/100的文章都是用高斯噪声。

​​​​​​​怎么计算I(\theta) 和CLRB?

四部曲:

第一步:首先写分布,假设Xiid

第二步:取log

第三步:求导,一次二次都可以,哪个方便用哪个。

明显不能再求了,已经很复杂了

第四步:

​​​​​​​

真正有随机性的只有x_k,而且交叉项肯定为0

因为 

所以 

之后稍微具体化一下,做一个Range Estimation,估计回波时延。

接收过程 

 因此我们知道,\theta=k\Delta t ,重新总结Fisher信息量,因此只有m个有效样本。
 

准备用微积分的方法,来近似

为功率谱密度。

进行一点儿傅里叶分析,对于任意信号S而言,如果S的傅里叶变换为 (读S飘),则

使用帕斯瓦尔等式(Par):

因此傅里叶变换是U变换,是正交的

所以,

分母就叫做有效带宽Effective Bandwidth(波形S的)。

这就是雷达原理的基本结论,估计精度取决于噪声大小,取决于信号的带宽。

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值