神经网络
ArthurKingYs
这个作者很懒,什么都没留下…
展开
-
病毒扩散仿真java程序,仿真模拟新冠肺炎病毒扩散
GitHub 地址如下:https://github.com/KikiLetGo/VirusBroadcast源码结构源码结构比较简单,我们来一起看一下:模型讲解我对仿真模型做了一个抽象和概括,我们一起对照着源码分析模型的整个模拟过程和思路。模型前提设置首先,假设 C(400,400) 是城市的中心,整个城市是以 C 为中心的圆,L=100 是圆的半径。假设 P(x...转载 2020-02-10 15:02:25 · 5501 阅读 · 2 评论 -
机器学习和统计学中常见的距离和相似度度量
https://zhuanlan.zhihu.com/p/27305237?utm_source=tuicool&utm_medium=referral常见距离与相似度度量欧氏距离定义在两个向量(两个点)上:点和点的欧氏距离为:闵可夫斯基距离Minkowski distance, 两个向量(点)的阶距离:当时就是曼哈顿距离,当时就是欧转载 2017-06-12 14:43:00 · 2348 阅读 · 0 评论 -
可变形卷积网络:计算机新“视”界
http://blog.sina.com.cn/s/blog_4caedc7a0102wvsx.html如同视觉是人们获取信息的主要渠道一样,计算机视觉也是人工智能研究领域的核心问题之一,已有几十年的研究历史。顾名思义,计算机视觉是研究如何让电脑“看懂”图像,例如,对图像中的物体进行识别、分割、跟踪和三维几何测量等。由于同样的物体在图像中可能呈现出不同的大小、姿态、视角变化甚至转载 2017-06-12 13:52:53 · 519 阅读 · 0 评论 -
用深度学习每次得到的结果都不一样,怎么办?(Python)
https://www.leiphone.com/news/201706/zt4Dm491Ol58C8Mc.html?utm_source=tuicool&utm_medium=referral神经网络算法利用了随机性,比如初始化随机权重,因此用同样的数据训练同一个网络会得到不同的结果。初学者可能会有些懵圈,因为算法表现得不太稳定。但实际上它们就是这么设计的。随机初始化可以让网转载 2017-06-21 09:23:58 · 29923 阅读 · 8 评论 -
如何实现模拟人类视觉注意力的循环神经网络?
https://www.leiphone.com/news/201706/HXLSskRbP3edAWMJ.html?utm_source=tuicool&utm_medium=referral关注不同的区域,然后将信息整合来得到整个的视觉印象,进而指导后面的眼球运动。将感兴趣的东西放在视野中心,每次只处理视野中的部分,忽略视野外区域,这样做最大的好处是降低了任务的复杂度。深度转载 2017-06-20 15:42:24 · 805 阅读 · 0 评论 -
一文读懂特征工程
https://mp.weixin.qq.com/s/CkDzLZCXOF6zzrn6_dd6Jw?utm_source=tuicool&utm_medium=referral本文结构1. 概述机器学习被广泛定义为“利用经验来改善计算机系统的自身性能”。事实上,“经验”在计算机中主要是以数据的形式存在的,因此数据是机器学习的前提和基础。数据来源多种多样,它转载 2017-06-20 10:25:48 · 2069 阅读 · 0 评论 -
大数据和机器学习等基本概念
大数据的定义 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据是一个笼统的概念暂未发现和准确的定义。 大数据的核心是利用数据的价值,机器学习是利用数据价值的关键技术,对于大数据而言,机器学习是不可或缺的转载 2017-05-09 15:26:06 · 1235 阅读 · 0 评论 -
支持向量机(SVM)算法
支持向量机(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。具体原理:1.转载 2017-05-24 09:52:28 · 1183 阅读 · 0 评论 -
图像语义分割技术-深度卷积网络图像识别
http://www.leiphone.com/news/201705/YbRHBVIjhqVBP0X5.html?utm_source=tuicool&utm_medium=referral大多数人接触 “语义” 都是在和文字相关的领域,或语音识别,期望机器能够识别你发出去的消息或简短的语音,然后给予你适当的反馈和回复。嗯,看到这里你应该已经猜到了,图像领域也是存在 “语义”转载 2017-05-04 10:47:32 · 1839 阅读 · 0 评论 -
神经网络通俗指南:一文看懂神经网络工作原理
现在谈人工智能已经绕不开“神经网络”这个词了。人造神经网络粗线条地模拟人脑,使得计算机能够从数据中学习。机器学习这一强大的分支结束了 AI 的寒冬,迎来了人工智能的新时代。简而言之,神经网络可能是今天最具有根本颠覆性的技术。看完这篇神经网络的指南,你也可以和别人聊聊深度学习了。为此,我们将尽量不用数学公式,而是尽可能用打比方的方法,再加一些动画来说明。转载 2017-04-18 13:44:05 · 3739 阅读 · 3 评论 -
数据不够怎么训练深度学习模型?不妨试试迁移学习
http://www.leiphone.com/news/201702/JKjzIC1xI7FLlPcs.html导语:随着深度学习技术在机器翻译、策略游戏和自动驾驶等领域的广泛应用和流行,阻碍该技术进一步推广的一个普遍性难题也日渐凸显:训练模型所必须的海量数据难以获取。深度学习大牛吴恩达曾经说过:做AI研究就像造宇宙飞船,除了充足的燃料之外,强转载 2017-02-10 14:22:26 · 1470 阅读 · 0 评论 -
如何训练深度神经网络?老司机的 15 点建议
http://www.leiphone.com/news/201701/gOwAU7YFQkJcFkVB.html1. 训练数据许多 ML 开发者习惯把原始训练数据直接扔给 DNN——为什么不这么做呢?既然任何 DNN (大多数人的假设)仍然能够给出不错的结果,不是吗?但是,有句老话叫“给定恰当的数据类型,一个简单的模型能比复杂 DNN 提供更好、更快的结果”。虽然这有一些例外转载 2017-01-19 15:56:16 · 4035 阅读 · 0 评论 -
面向开发人员的机器学习指南3
基于内容的邮件排序(推荐系统)这个实例完全是关于建立你自己的推荐系统的。我们将基于如下特征对邮件进行排序:“发送人”、“主题”、“主题中的公共词汇”和“邮件正文中的公共词汇”。稍后我们会对实例中的这些特征一一做解释。注意在设计你自己的推荐系统时,你要自己定义这些特征,而这正是最困难的环节之一。想出合适的特征来非常重要,而且就算最终选好了特征,已有的数据往往可能无法直接利用。这个实例转载 2017-01-12 18:06:38 · 572 阅读 · 0 评论 -
一文了解强化学习
http://geek.csdn.net/news/detail/201928?utm_source=tuicool&utm_medium=referral强化学习非常重要,原因不只在于它可以用来玩游戏,更在于其在制造业、库存、电商、广告、推荐、金融、医疗等与我们生活息息相关的领域也有很好的应用。本文结构:定义和监督式学习, 非监督式学习的区别主要算法和类别应用举例转载 2017-06-14 10:24:38 · 966 阅读 · 0 评论 -
视频行为识别年度进展
https://mp.weixin.qq.com/s?__biz=MzI1NTE4NTUwOQ==&mid=2650326555&idx=1&sn=ffb945f27814bb450b8de2d87087227d&utm_source=tuicool&utm_medium=referral视频行为识别,通俗来讲就是给出一段视频,来判断人或者感兴趣的物体在进行什么行为。转载 2017-06-14 11:00:47 · 4543 阅读 · 0 评论 -
变革尚未成功:深度强化学习研究的短期悲观与长期乐观
https://www.jiqizhixin.com/articles/2018-03-18-3?utm_source=tuicool&utm_medium=referral深度强化学习是最接近于通用人工智能(AGI)的范式之一。不幸的是,迄今为止这种方法还不能真正地奏效。在本文中,作者将为我们解释深度强化学习没有成功的原因,介绍成功的典型案例,并指出让深度强化学习奏效的方法和研究方向。本...转载 2018-03-20 10:34:01 · 1223 阅读 · 0 评论 -
朴素贝叶斯的那点事儿
在机器学习领域中,朴素贝叶斯是一种基于贝叶斯定理的简单概率分类器(分类又被称为监督式学习,所谓监督式学习即从已知样本数据中的特征信息去推测可能出现的输出以完成分类,反之聚类问题被称为非监督式学习),朴素贝叶斯在处理文本数据时可以得到较好的分类结果,所以它被广泛应用于文本分类/垃圾邮件过滤/自然语言处理等场景。朴素贝叶斯假设了样本的每个特征之间是互相独立、互不影响的,比方说,如果有一个水果是转载 2017-12-28 10:58:00 · 651 阅读 · 0 评论 -
二十一世纪计算 | 大图数据科学: 图数据中的推理
http://blog.sina.com.cn/s/blog_4caedc7a0102x25l.html编者按:我们正淹没在大数据的河流里,数据之间的相互关系蕴含着丰富的信息,但也常常被我们忽略。本文中,加州大学圣克鲁兹分校计算机科学系教授、美国人工智能学会(AAAI)院士Lise Getoor讲述了图识别是如何依靠数据做出推理的,并给出了自己对于概率软性逻辑PSL优越性和可能应用的转载 2017-12-07 17:14:47 · 362 阅读 · 0 评论 -
超全!基于Java的机器学习项目、环境、库...
https://yq.aliyun.com/articles/278837?utm_source=tuicool&utm_medium=referral摘要: 你是一名希望开始或者正在学习机器学习的Java程序员吗? 利用机器学习编写程序是最佳的学习方式。你可以从头开始编写算法,但是利用现有的开源库,你可以取得更大的进步。 本文介绍了主要的平台和开放源码的机器学习库。你是一转载 2017-12-07 16:36:29 · 11219 阅读 · 0 评论 -
深度学习中的五大正则化方法和七大优化策略
https://www.jiqizhixin.com/articles/2017-12-20?utm_source=tuicool&utm_medium=referral深度学习中的正则化与优化策略一直是非常重要的部分,它们很大程度上决定了模型的泛化与收敛等性能。本文主要以深度卷积网络为例,探讨了深度学习中的五项正则化与七项优化策略,并重点解释了当前最为流行的 Adam 优化算法。本文转载 2017-12-21 10:41:55 · 3315 阅读 · 0 评论 -
神经网络优化和检查问题的37条建议
https://baijia.baidu.com/s?id=1573879911456703&wfr=pc&fr=ch_lst&utm_source=tuicool&utm_medium=referral从四个方面(数据集、数据归一化/增强、实现、训练)I. 数据集问题1. 检查你的输入数据检查馈送到网络的输入数据是否正确。例如,我不止一转载 2017-07-26 18:50:54 · 1026 阅读 · 1 评论 -
开启基于JavaScript的机器学习之路 | 机器学习与JavaScript(一)
https://mp.weixin.qq.com/s/N6aEUn7J2H48J8XZ4pmvAg基于 JavaScript 的机器学习?!没错,是 基于 JavaScript 的机器学习!关注前端之巅系列文章——《机器学习与 JavaScript》,利用 JavaScript 开启机器学习之路! 基于 JavaScript 的机器学习?你应该觉得基于 JavaScript 的机器转载 2017-07-07 15:28:07 · 448 阅读 · 0 评论 -
深度学习入门和学习书籍
深度学习书籍推荐:深度学习(Deep Learning) by Ian Goodfellow and Yoshua Bengio and Aaron Courville中文版下载地址:https://github.com/exacity/deeplearningbook-chineseR语言深度学习实践指南(Deep Learni转载 2017-06-15 14:10:58 · 5048 阅读 · 1 评论 -
SAS首席科学家:如何选择机器学习算法?
https://www.leiphone.com/news/201706/fsdpvGeCp7WURxci.html?utm_source=tuicool&utm_medium=referral本文面向的是入门到中级的数据科学家,或对利用机器学习算法来解决问题感兴趣的数据分析师。面对各种各样的机器学习算法——“我应该用哪一个?”,是一名初学者经常遇到的问题。问题的答案,取决于许转载 2017-06-15 13:50:20 · 1024 阅读 · 0 评论 -
教程 | 从特征分解到协方差矩阵:详细剖析和实现PCA算法
https://baijia.baidu.com/s?id=1572059580053513&wfr=pc&fr=ch_lst&utm_source=tuicool&utm_medium=referral摘要:机器之心编译参与:蒋思源本文先简要明了地介绍了特征向量和其与矩阵的关系,然后再以其为基础解释协方差矩阵和主成分分析法的基本概念,最后我们结合协方差矩阵和主成分分析法实现数据降维。转载 2017-07-06 13:57:58 · 3593 阅读 · 0 评论 -
面向开发人员的机器学习指南2
常见陷阱这部分要介绍的是在应用机器学习技术的过程中经常会碰到的问题,主要内容是向读者解析这些陷阱以帮助读者避开它们。过度拟合对数据进行拟合时,数据本身可能会包含噪声(例如有测量误差)。如果你精确地把每一个数据点都拟合进一个函数中,那你会把噪声也耦合到模型中去。这虽然能使模型在预测测试数据时表现良好,但在预测新数据时会相对较差。把数据点和拟合函数画在图表中,下列左图反转载 2017-01-12 18:05:08 · 619 阅读 · 0 评论 -
面向开发人员的机器学习指南1
于模型验证的技术方法,以及一些与机器学习验证方法相关的专业术语。交叉验证交叉验证法是机器学习领域中最常用的验证方法之一。它的基本思想是,将原始数据分为训练集和验证集,先用训练集对模型进行训练,然后再用模型来预测验证集的数据。将预测值与实际值进行对比,以此来评价模型的性能和训练数据的质量。这种交叉验证法最重要的环节是分割数据。应用这种方法时,应该始终使用整个数据集。换言之,你转载 2017-01-12 17:52:28 · 1213 阅读 · 0 评论 -
数据仓库详细分析和说明
数据仓库是企业统一的数据管理的方式,将不同的应用中的数据汇聚,然后对这些数据加工和多维度分析,并最终展现给用户。它帮助企业将纷繁浩杂的数据整合加工,并最终转换为关键流程上的KPI,从而为决策/管理等提供最准确的支持,并帮助预测发展趋势。因此,数据仓库是企业IT系统中非常核心的系统。根据企业构建数据仓库的主要应用场景不同,我们可以将数据仓库分为以下四种类型,每一种类型的数据仓库系统都有不同的原创 2016-04-05 15:12:22 · 25872 阅读 · 1 评论 -
一篇文章透彻解读聚类分析及案例实操
1 聚类分析介绍1.1 基本概念聚类就是一种寻找数据之间一种内在结构的技术。聚类把全体数据实例组织成一些相似组,而这些相似组被称作聚类。处于相同聚类中的数据实例彼此相同,处于不同聚类中的实例彼此不同。聚类技术通常又被称为无监督学习,因为与监督学习不同,在聚类中那些表示数据类别的分类或者分组信息是没有的。通过上述表述,我们可以把聚类定义为将数据集中在某些方面具有相似性的数据转载 2016-04-03 10:52:30 · 24182 阅读 · 1 评论 -
监控之我见
我们想像中的监控?我们想像中监控无所不能,是个超人。需要什么数据,它就能给我们什么数据;需要找到故障根源,它就能及时告知我们故障根源。现实中的监控可事实上并非如此,我们对监控寄予了太多,想到的就加上去,导致它越来越胖,越来越臃肿,但似乎并未解决我们的问题。目前的监控平台和工具都很多,开源的、原创 2016-01-27 11:31:32 · 678 阅读 · 0 评论 -
遗传算法优点(论文可用)
遗传算法也是计算机科学人工智能领域中用于解决最优化的一种搜索启发式算法,是进化算法的一种。这种启发式通常用来生成有用的解决方案来优化和搜索问题。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法在适应度函数选择不当的情况下有可能收敛于局部最优[1] ,而不能达到全局最优。遗传算法的基本运算过程如下:a)初始化:设置进化代数计数器t转载 2015-10-21 19:19:55 · 13305 阅读 · 0 评论 -
bp
反向传播BP模型学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算 法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法 为模型。自从40年代Hebb提出的学习规则以来,人们相继提出了各种各转载 2015-12-24 15:36:19 · 611 阅读 · 0 评论 -
处理不确定数据的方法研究
成果简介:不确定性是客观存在的大量现象和事物的特征,其表现形式也具有多样性,如随机性、模糊性、粗糙性以及多重不确定性等。随着研究范围的扩大、研究内容的深入,对不确定现象与事物的研究及其数据处理方法也亟待突破和落地应用。本研究针对不确定性的数学理论、算法及应用开展了多层次研究:在随机性数据处理方面,应用已有的成熟算法对实际生活中常见的不确定性现象开展分析,包括了多维标度法在亲属关系中的分析应原创 2016-01-25 11:41:35 · 5997 阅读 · 0 评论 -
BP神经网络原理及C++实战
前一段时间做了一个数字识别的小系统,基于 BP 神经网络算法的,用 MFC 做的交互。在实现过程中也试着去找一些源码,总体上来讲,这些源码的可移植性都不好,多数将交互部分和核心算法代码杂糅在一起,这样不仅代码阅读困难,而且重要的是核心算法不具备可移植性。设计模式,设计模式的重要性啊!于是自己将 BP 神经网络的核心算法用标准 C++ 实现,这样可移植性就有保证的,然后在核心算法上实现基于不同 GU转载 2016-01-20 20:43:03 · 1531 阅读 · 0 评论 -
神经网络和遗传算法结合(原创)
本人理解: 神经网络是用来处理 非线性关系的,输入和输出之间的关系可以确定(存在非线性关系),可以利用神经网络的自我学习(需要训练数据集 用明确的输入和输出),训练后权值确定,就可以测试新的输入了。 遗传算法是用来解决最值问题的,生物进化、优胜略汰。更灵活没有限制,唯一的难处就是 编码染色体 和评价函数的选择。 两者的结合可以从两个方面确定:原创 2015-10-22 16:33:03 · 19795 阅读 · 2 评论 -
遗传算法和bp神经网络结合(神经网络权值学习)
BP算法的误差减小,是反梯度方向进行的。因此,极易陷入局部极小点的困境。一旦训练学习样本数目多,输入输出关系比较复杂, 网络的收敛速度变得缓慢。表现为对网络结构的初值要求很高。初值的不合理, 会造成BP算法的收敛摆动, 以至不收敛。 GA在随机点集中遗传优化出bp神经网络结构的初值,再利用bp神经网络进行自我学习。 GA与其它优化算法不同, 它将“ 自然选择” 机理原创 2015-10-22 13:20:24 · 11248 阅读 · 0 评论 -
模糊数学
模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。察德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊转载 2015-10-21 19:53:55 · 1935 阅读 · 0 评论 -
遗传算法一个的例子
遗传算法介绍(内含实例)现代生物遗传学中描述的生物进化理论:遗传物质的主要载体是染色体(chromsome),染色体主要由DNA和蛋白质组成。其中DNA为最主要的遗传物质。基因(gene)是有遗传效应的片断,它存储着遗传信息,可以准确地复制,也能发生突变,并可通过控制蛋白质的合成而控制生物的状态.生物自身通过对基因的复制(reproduction)和交叉(crossover,即基因分离转载 2015-10-21 16:25:07 · 633 阅读 · 0 评论 -
bp神经网络
一,什么是BP"BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小转载 2015-10-20 09:47:43 · 689 阅读 · 0 评论 -
机器学习算法选择
本文主要回顾下几个常用算法的适应场景和优缺点!对于你的分类问题,你知道应该如何选择哪一个机器学习算法么?当然,如果你真的在乎精度(accuracy),最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。但是如果你只是在寻找一个“good enough”的算法来解决你的问题,或者这里有些技转载 2016-02-27 11:11:54 · 494 阅读 · 0 评论