使用 scikit-learn 实战感知机算法

一 引言

感知机(Perceptron)是最早的人工神经网络模型之一,由 Frank Rosenblatt 在 1957 年提出。虽然它相对简单,但在处理线性可分问题时却非常有效。本文将介绍如何使用 Python 的 scikit-learn 库来实现感知机,并通过一个简单的数据集来展示其实战效果。

二 准备工作

2.1 安装 scikit-learn

确保你的环境中已经安装了 scikit-learn。如果没有安装,可以通过 pip 安装:

pip install scikit-learn

2.2 导入必要的库

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

三 创建数据集

我们将创建一个简单的二分类数据集,数据是线性可分的。

# 设置随机种子以便结果可复现
np.random.seed(42)

# 生成数据集
X, y = make_blobs(n_samples=100, centers=2, random_state=42, cluster_std=1.5)

# 将数据分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

四 训练感知机模型

接下来,我们将使用 scikit-learnPerceptron 类来训练我们的模型。

# 初始化感知机模型
perceptron = Perceptron(max_iter=1000, tol=None, random_state=42)

# 训练模型
perceptron.fit(X_train, y_train)

五 模型评估

我们使用准确率来评估模型的性能。

# 对测试集进行预测
y_pred = perceptron.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")

六 可视化决策边界

为了让读者更好地理解感知机的工作方式,我们将可视化训练数据及其决策边界。

def plot_decision_boundary(perceptron, X, y):
    # 创建网格以绘制决策边界
    h = .02  # 网格步长
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))

    # 预测网格中每个点的分类
    Z = perceptron.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    # 绘制决策边界
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)

    # 绘制训练数据点
    plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', cmap=plt.cm.Paired)
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.title('Perceptron Decision Boundary')

    plt.show()

# 绘制决策边界
plot_decision_boundary(perceptron, X, y)

七 结论

通过本文的学习,您应该能够使用 scikit-learn 实现一个基本的感知机模型,并通过一个简单的二分类问题来评估和可视化其性能。尽管感知机在处理复杂的非线性数据时可能不是最佳选择,但对于线性可分的数据集来说,它是一个快速而有效的解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据AI

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值