题意:
。。。是中文
思路:
简单的dp,以后看到dp决不能退缩!
dp[i][j]表示前i个物品取j对最小疲劳度,
这样递推方程就好说了,对第i个物品:
取:i肯定只会和i-1一起搬,dp[i][j]=dp[i-2][j-1]+(w[i]-w[i-1])*(w[i]-w[i-1])
不取:dp[i][j]=dp[i-1][j]
初始化啥的注意下就好了
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#define inf 0x3f3f3f3f
#define ll __int64
using namespace std;
int dp[2005][1005],n,k,w[2005];
int main()
{
int i,j;
while(~scanf("%d%d",&n,&k))
{
for(i=1;i<=n;i++)
scanf("%d",&w[i]);
sort(w+1,w+n+1);
memset(dp,0x3f,sizeof dp);
for(i=0;i<=n;i++)//在这里WA了三次 哎。。
dp[i][0]=0;
for(i=2;i<=n;i++)
{
for(j=1;2*j<=i;j++)
{
dp[i][j]=min(dp[i-2][j-1]+(w[i]-w[i-1])*(w[i]-w[i-1]),dp[i-1][j]);
}
}
printf("%d\n",dp[n][k]);
}
return 0;
}