R

赋值:
x = c(1:100)
x <-c(1:100)
求和:
sum(x)
求最大值:
max(x)
求最小值:
min(x)
求方差:
var(x)
求累积:
prod(x)
求标准差:
sd(x)
帮助信息:
help(name)//name为所要查询的函数
产生向量:
> 1:10
 [1]  1  2  3  4  5  6  7  8  9 10
> 1:10-1
 [1] 0 1 2 3 4 5 6 7 8 9
> 1:10*2
 [1]  2  4  6  8 10 12 14 16 18 20
> 2:60*2+1
 [1]   5   7   9  11  13  15  17  19  21  23  25  27  29  31  33  35  37  39
[19]  41  43  45  47  49  51  53  55  57  59  61  63  65  67  69  71  73  75
[37]  77  79  81  83  85  87  89  91  93  95  97  99 101 103 105 107 109 111
[55] 113 115 117 119 121
> a<-2:60*2+1
> a
 [1]   5   7   9  11  13  15  17  19  21  23  25  27  29  31  33  35  37  39
[19]  41  43  45  47  49  51  53  55  57  59  61  63  65  67  69  71  73  75
[37]  77  79  81  83  85  87  89  91  93  95  97  99 101 103 105 107 109 111
[55] 113 115 117 119 121
向量查询:
查询单个向量值:
> a[5]  ##查询第5个向量值
[1] 13
> a[-5]  ##不显示第5个向量值
 [1]   5   7   9  11  15  17  19  21  23  25  27  29  31  33  35  37  39  41
[19]  43  45  47  49  51  53  55  57  59  61  63  65  67  69  71  73  75  77
[37]  79  81  83  85  87  89  91  93  95  97  99 101 103 105 107 109 111 113
[55] 115 117 119 121
查询多个向量值:
> a[1:5]  ##查询第1:5个向量值
[1]  5  7  9 11 13
> a[-(1:5)]  ##不显示第1:5个向量值
 [1]  15  17  19  21  23  25  27  29  31  33  35  37  39  41  43  45  47  49
[19]  51  53  55  57  59  61  63  65  67  69  71  73  75  77  79  81  83  85
[37]  87  89  91  93  95  97  99 101 103 105 107 109 111 113 115 117 119 121
> a[c(2,4,7)]  ##查询第2、4、7个向量值
[1]  7 11 17
> a[3:8]  ##查询第3到8个向量值
[1]  9 11 13 15 17 19
> a[a<20]  ##查询小于20的向量值
[1]  5  7  9 11 13 15 17 19
> a[a>30 & a<50]  ##查询大于30并且小于50的向量值
 [1] 31 33 35 37 39 41 43 45 47 49
> a[a[3]]  ##查询第a[3]个向量值
[1] 21
> seq(1,10)  ##生成1:10的连续向量,默认间距为1
 [1]  1  2  3  4  5  6  7  8  9 10
> seq(1,19,by=2)  ##生成1:19的连续向量,间距为2
 [1]  1  3  5  7  9 11 13 15 17 19
> seq(5,121,length=10)  ##生成从5到121的向量,长度为10
 [1]   5.00000  17.88889  30.77778  43.66667  56.55556  69.44444  82.33333
 [8]  95.22222 108.11111 121.00000
产生字母向量:
> letters[1:30]
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r"
[19] "s" "t" "u" "v" "w" "x" "y" "z" NA  NA  NA  NA 




which函数:真正的查询函数
> a<-c(2,3,4,2,5,1,6,3,2,5,8,5,7,3)
> which.max(a)
[1] 11
> which.min(a)
[1] 6
> a[which.max(a)]
[1] 8
> which(a==2)
[1] 1 4 9
> which(a>5)
[1]  7 11 13
> a[which(a>5)]
[1] 6 8 7


rev函数,sort函数:
> a<-1:20
> rev(a)
 [1] 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1
> sort(a)
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
> sort(rev(a))
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
> rev(sort(a))
 [1] 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1


> a<-c(1:12)
> matrix(a,nrow=3,ncol=4)
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> matrix(a,nrow=4,ncol=3)
     [,1] [,2] [,3]
[1,]    1    5    9
[2,]    2    6   10
[3,]    3    7   11
[4,]    4    8   12
> matrix(a,nrow=4,ncol=3,byrow=T)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12




> a<-c(1:12)
> matrix(a,nrow=3,ncol=4)
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> matrix(a,nrow=4,ncol=3)
     [,1] [,2] [,3]
[1,]    1    5    9
[2,]    2    6   10
[3,]    3    7   11
[4,]    4    8   12
> matrix(a,nrow=4,ncol=3,byrow=T)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12
> t(a)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,]    1    2    3    4    5    6    7    8    9    10    11    12
> a
 [1]  1  2  3  4  5  6  7  8  9 10 11 12
> a=matrix(1:12,nrow=3,ncol=4)
> t(a)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12
> b=a
> b
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> a+b
     [,1] [,2] [,3] [,4]
[1,]    2    8   14   20
[2,]    4   10   16   22
[3,]    6   12   18   24
> a-b
     [,1] [,2] [,3] [,4]
[1,]    0    0    0    0
[2,]    0    0    0    0
[3,]    0    0    0    0
> a*b
     [,1] [,2] [,3] [,4]
[1,]    1   16   49  100
[2,]    4   25   64  121
[3,]    9   36   81  144
> a%*%b
错误于a %*% b : 非整合参数
> a%*%t(b)
     [,1] [,2] [,3]
[1,]  166  188  210
[2,]  188  214  240
[3,]  210  240  270
> diag(a)
[1] 1 5 9
> diag(diag(a))
     [,1] [,2] [,3]
[1,]    1    0    0
[2,]    0    5    0
[3,]    0    0    9
> diag(4)
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1


> a=matrix(rnorm(16),4,4)
> a
           [,1]        [,2]       [,3]        [,4]
[1,]  0.2444748 -0.06604418  0.7758382 -1.03614099
[2,]  1.2399238 -0.22550548 -0.9208650  1.32678104
[3,] -0.8085401 -1.48942704 -1.3238675 -1.44913698
[4,] -0.2688544  0.78279487 -0.3427804 -0.04961982
> solve(a)##求逆矩阵
            [,1]       [,2]        [,3]       [,4]
[1,]  0.87542310  0.6740288 -0.01689147  0.2358922
[2,]  0.25783626  0.0663873 -0.15839453  1.0169742
[3,]  0.01296783 -0.3604023 -0.31519186 -0.7024465
[4,] -0.76529044 -0.1150571 -0.22989766 -0.5351399
> b<-c(1:4)
> solve(a,b)##解线性方程组
[1]  3.116375  3.983324 -4.463198 -3.825657


矩阵的特征值与特征向量:
> a=diag(4)+1
> a
     [,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2
> a.e=eigen(a,symmetric=T)
> a.e
$values
[1] 5 1 1 1


$vectors
     [,1]       [,2]       [,3]       [,4]
[1,] -0.5  0.8660254  0.0000000  0.0000000
[2,] -0.5 -0.2886751 -0.5773503 -0.5773503
[3,] -0.5 -0.2886751 -0.2113249  0.7886751
[4,] -0.5 -0.2886751  0.7886751 -0.2113249
> a.e$vectors%*%diag(a.e$values)%*%t(a.e$vectors)
     [,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2

































评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值