- 博客(12)
- 资源 (6)
- 收藏
- 关注
原创 什么是cost function,什么事regularization?
趁着老大出差,在工位上写点以前想的东西。 当我们用传统的统计机器学习方法处理问题时,我们需要定义一个cost function以衡量模型的好坏。但在实际场景中,我们的这个cost function的泛化性能未必好,所以,in the process of data mining,我们一直想做的事情就是如何找到一个更好的cost function。 Regularization这是就出现了,
2017-04-13 10:50:17 915
原创 一种改进的逻辑斯蒂回归
Logistic Regression的本质不是MLE嘛LR的一个很大的缺点就是单个training example的likelihood可能很小,cost可能会很大,这样的话,单个training example可能会对整体造成很大的影响对于与sigmoid函数就是说,这个函数的下限约等于0,取-log后会是一个很大的正数,所以一个改进的思路就是认为地把x = sigmo
2016-07-25 00:43:37 1026
原创 神经网络的严格矩阵求导
玩机器学习的人基本功,就不解释了,BP的核心思想是cost对z和a求导,然后利用链式求导法则从后往前推,然后利用这些中间变量求对theta的导数(也就是梯度)。。。。写的累死了,顺便晒下薄扶林政治学院的Main Building
2016-07-20 14:59:05 1495 1
原创 基于logistic regression的严格矩阵求导
本人的其他博客中提到了可以用矩阵求导的方法来运算,然后这里简单讲下。对于线性回归,矩阵求导很简单的啦,直接贴Ng老师的课件吧其实感觉挺巧的,虽然这里Ng老师给出来一个很完美的式子,一步就把gradient矩阵写出来了,但问题就是没把问题解释明白,换了个式子,以我这种人的智商,肯定要懵逼的。所以我给出一个更加具有一般性的证明,虽然最后的结果是一样的。
2016-07-19 21:53:15 1055
原创 MNIST手写数字的识别——kNN篇
直接从sklearn调用KNeighborsClassifier,设置n_neighbor = 5,使用默认的uniform的weight function,即每个neighbor的贡献都是1。代码如下,不过跑的很慢(i7-4800MQ)# coding=utf-8# 都是抄别人的,侵权不究# typhoonbxq# the University of Hong Kong# Refer
2016-07-19 17:02:13 4199
原创 MNIST手写数字的识别——DNN篇
DNN要比CNN要简单的多,当年我还用gradient descent写DNN的源代码呢,可惜现在需要学的东西太多了,所以对算法源代码就不如以前深究咯。# coding=utf-8# 版权所有,侵权不究# typhoonbxq# the University of Hong Kongfrom urllib import urlretrieveimport cPickle a
2016-07-19 11:13:05 4744
原创 MNIST手写数字的识别——CNN篇
这里贴一个用nolearn,lasagne训练CNN的例子,数据集嘛,当然是MNIST咯,keras暂时还没研究过,但nolearn训练CNN真的炒鸡炒鸡方便啊这里简单说下CNN的结构,首先是输入层,是一个1*28*28的图像矩阵,用32*5*5的滤波器去虑,得到32*24*24的hidden layer,然后对这个东西进行(2,2)的maxpool,结果是32*12*12的hidde
2016-07-19 10:29:50 14507 1
原创 闲着没事,写了个线性回归的源代码
以前只是在Coursera上吴恩达的《Machine Learning》课时用Matlab写过线性回归的源代码,这些东西虽然在python中有现成的库可以调用,但为了练手,还是随便写了一个线性回归的源代码,数据集是课后作业中的.mat文件不过由于只是纯粹练手的缘故,并没有引入L2-Regularization,感觉numpy对矩阵操作还是不如Matlab方便# coding=utf-8#
2016-07-18 10:49:56 2952 2
原创 装theano,配置GPU
再也不相信乱七八糟的国产博客了,这里贴个教程https://github.com/philferriere/dlwin(比较基本的步骤都按照各来,出了一个环境变量的设置,要按照ref里面的东西)reference里面有一个很好的
2016-07-13 23:50:31 396
原创 神经网络,逻辑回归,矩阵求导
感觉一个很有意思的问题,对于逻辑回归来说,在进行gradient descent时,是可以通过矩阵求导的方式来做的,但需要注意的是,假设X(比如100*1)是一个列向量,我们感兴趣的是sigmoid(X)(也是100*1)对X的倒数,所以这里会得到一个100*100的矩阵,但仅在对角线上有值,其他均为0。所以,当我把逻辑回归延伸到神经网络时,会觉得很奇怪,因为,对于course
2016-07-13 23:45:32 1694
原创 关于协同过滤
感觉很奇怪,系统过滤到底是应该把它理解成一个“线性回归”的问题还是一个“逻辑回归”(或者softmax)的问题?按照吴恩达在Coursera上的课程介绍来说,显然是一个“线性回归”问题,因为在定义cost function时,我们采用的是二分之一平方差(顺便说下这里时latent factor model)所以,当我重新审视这个问题时,我就开始思考,协同过滤的cost fu
2016-07-13 23:33:05 439
原创 Python读取文件小结(csv,txt)
搞了半天终于把Python读取文件的方式搞定了,这里简单说下1. 使用openf = open("E:\\ML\\machine-learning-ex2\\machine-learning-ex2\\ex2\\ex2data1.csv")line = f.readline()while line: print line line = f.readline()
2016-07-04 14:15:32 14885 1
部分独立成分分析源文件
2015-05-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人