什么是cost function,什么事regularization?

本文探讨了在使用传统统计机器学习方法处理问题时,如何通过改进Cost Function来提高模型的泛化性能。文中提到,尽管传统的Cost Function能够评估模型的好坏,但实际应用中可能效果不佳。因此,引入Regularization来限制模型复杂度,从而达到简化模型并提高泛化能力的目的。作者还提出了关于如何定义Total Loss的新想法。
摘要由CSDN通过智能技术生成

趁着老大出差,在工位上写点以前想的东西。 当我们用传统的统计机器学习方法处理问题时,我们需要定义一个cost function以衡量模型的好坏。但在实际场景中,我们的这个cost function的泛化性能未必好,所以,in the process of data mining,我们一直想做的事情就是如何找到一个更好的cost function。 Regularization这是就出现了,从某种意义上来说,它是给现有的参数加了一个限制,由于Ocam’s Razor的原理,一个简单的模型会有更好的泛化能力。那么换句话说,cost functin + Regularization是不是一个对数据更好的模型假设呢。 训练数据时,total cost = cost function + Regularization。如果非要用训练数据来估计其泛化loss,其实我更愿意用cost function,而不是total cost,所以,有的时候在思考问题时,我想找一个新的表达式来定义total loss,大概思路是不对所有的数据进行正则化。

暂时脑子很乱,组织下语言,有时间再更新博客 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值