矩阵乘法优化DP

矩阵乘法优化DP
在许多的DP题目中,转移方程本身不难推,但是需要循环的次数巨大。这时候可以利用矩阵乘法将时间复杂度从O(n) 优化到 O(log n)。这里只用十分简单的一维DP做例子。

如何乘

在矩阵乘法中,两个矩阵A(a*b)和B(b*c),相乘得到C(a*c)。
C[i,j]=bk=1A[i,k]B[k,j] 具体可以看一下百度百科。矩阵乘法满足乘法结合律,这是很关键的一点。之后矩阵乘用×表示,数字乘用*。

接下来用求斐波那契数列做例子
状态转移方程: F[i]=F[i1]+F[i2]F[0]=1,F[1]=1
列出一个表格[1 1]×A(2,2)=[2 3]
初始的矩阵为[1 1]即第一项和第二项,目标为第二项和第三项。
目标的第一个数由初始的第一个数*A[1,1]+第二个数*A[1,2]。
目标的第二个数由初始的第一个数*A[2,1]+第二个数*A[2,2]。
那么A就出来了。
[0 1]
[1 1]
接着将A快速幂需要的次数就行了。因为矩阵乘法满足结合律才可以快速幂。
Code

type
    arr=array[1..2,1..2] of int64;
    arr1=array[1..2] of int64;
const
    mo:longint=100000007;

var
    f:arr=((0,1),
           (1,1));
    f1:arr1=((1),
             (0));
    n:int64;

function matrix(a,b:arr):arr;
var
    i,j,k:longint;
begin
    fillchar(matrix,sizeof(matrix),0);
    for i:=1 to 2 do
    begin
        for j:=1 to 2 do
        begin
            for k:=1 to 2 do
            begin
                matrix[i,j]:=(matrix[i,j]+a[i,k]*b[k,j]+mo)mod mo;
            end;
        end;
    end;
end;

function matrix1(a:arr1;b:arr):arr1;
var
    i,j,k:longint;
begin
    fillchar(matrix1,sizeof(matrix1),0);
    i:=1;
    for j:=1 to 2 do
    begin
        for k:=1 to 2 do
        begin
            matrix1[j]:=(matrix1[j]+a[k]*b[k,j]+mo)mod mo;
        end;
    end;
end;

function mi(a:arr;b:int64):arr;
var
    c:arr;
begin
    if b=1 then exit(a);
    if b mod 2=0 then
    begin
        c:=mi(a,b div 2);
        exit(matrix(c,c));
    end
    else
    begin
        c:=mi(a,b div 2);
        exit(matrix(matrix(c,c),a));
    end;
end;
begin
    read(n);
    f:=mi(f,n-1);
    f1:=matrix1(f1,f);
    writeln(f1[2]);
end.

再举一个例子
【GDOI2015】粗心的邮差
这里写图片描述
经过找规律等一堆神奇的算法之后,发现:
如果f[i]表示n为i的答案的话, f[i]=f[i1]2+f[i3]2f[i5]
啊!!!n巨大?矩阵乘法!
需要保存5个东西,准备好5*5的矩阵
[2,1,0,0,0]
[0,0,1,0,0]
[2,0,0,1,0]
[0,0,0,0,1]
[-1,0,0,0,0]
完美解决!

矩阵乘法优化动态规划是用来解决矩阵连乘积的最优计算次序的问题。这个问题可以通过动态规划的方法来解决。首先,我们定义一个二维数组dp[i][j],其中dp[i][j]表示计算矩阵Ai到Aj的最优计算次序所需的最少乘法次数。然后,我们可以使用递推的方式来计算dp[i][j]的值。 具体的递推步骤如下: 1. 初始化dp[i][i]为0,表示只有一个矩阵时,不需要进行乘法操作。 2. 对于dp[i][j],我们需要枚举一个分割点k,将矩阵连乘积分成两部分,即Ai到Ak和Ak+1到Aj。我们可以通过遍历所有可能的分割点k,来求解dp[i][j]的最小值。 3. 对于每个分割点k,我们可以使用递归的方式求解dp[i][k]和dp[k+1][j]。 4. 根据动态规划的思想,我们可以使用一个循环来遍历所有可能的分割点k,并更新dp[i][j]的值。 最终,当我们计算完所有的dp[i][j]后,dp[n]就表示了矩阵A1到An的最优计算次序所需的最少乘法次数。 这个方法的时间复杂度为O(n^3),其中n表示矩阵的个数。通过使用动态规划来优化矩阵连乘积的计算次序,可以大大减少计算量,提高算法的效率。引用<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [矩阵连乘积问题——动态规划](https://blog.csdn.net/qq_43633063/article/details/105943437)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [动态规划 矩阵连乘优化](https://blog.csdn.net/u012785169/article/details/100677011)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值