高斯消元模板

高斯消元就是把一个N元N次方程组用 O(N3) 的方法解出来
本质上是用加减消元法,使得方程的元数变少,到最后变为一元一次方程,再回代得出所有元的解

非递归模板

答案最后在b数组里,原来的方程组储存在a和b数组里
直接输入方程可求解

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define N 510
#define db double
using namespace std;
int n,m,d[N],c[N][N],q[N*1000][2];
db a[N][N],b[N],ans[N*1000];
void jh(int i,int j)
{
    fo(k,1,n) swap(a[i][k],a[j][k]);swap(b[i],b[j]);
}
void gaosi()
{
    fo(k,1,n-1) 
    {
        int l=k;
        fo(i,k+1,n) if(abs(a[i][k])>abs(a[l][k])) l=i;
        jh(l,k);
        fo(i,k+1,n)
        {
            if(a[i][k]==0) continue;
            b[i]-=b[k]*a[i][k]/a[k][k];
            fd(j,n,k) a[i][j]-=a[k][j]*a[i][k]/a[k][k];
        }
    }
    for(int k=n;k;k--)
    {
        fo(i,k+1,n) b[k]=b[k]-b[i]*a[k][i];
        b[k]/=a[k][k];
    }
}
int main()
{
    freopen("jy.in","r",stdin);
    scanf("%d",&n);
    fo(i,1,n)
    {
        fo(j,1,n) scanf("%lf",&a[i][j]);
        scanf("%lf",&b[i]);
    }
    gaosi();
    fo(i,1,n) printf("%.3lf ",b[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值