高斯消元就是把一个N元N次方程组用
O(N3)
的方法解出来
本质上是用加减消元法,使得方程的元数变少,到最后变为一元一次方程,再回代得出所有元的解
非递归模板
答案最后在b数组里,原来的方程组储存在a和b数组里
直接输入方程可求解
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define N 510
#define db double
using namespace std;
int n,m,d[N],c[N][N],q[N*1000][2];
db a[N][N],b[N],ans[N*1000];
void jh(int i,int j)
{
fo(k,1,n) swap(a[i][k],a[j][k]);swap(b[i],b[j]);
}
void gaosi()
{
fo(k,1,n-1)
{
int l=k;
fo(i,k+1,n) if(abs(a[i][k])>abs(a[l][k])) l=i;
jh(l,k);
fo(i,k+1,n)
{
if(a[i][k]==0) continue;
b[i]-=b[k]*a[i][k]/a[k][k];
fd(j,n,k) a[i][j]-=a[k][j]*a[i][k]/a[k][k];
}
}
for(int k=n;k;k--)
{
fo(i,k+1,n) b[k]=b[k]-b[i]*a[k][i];
b[k]/=a[k][k];
}
}
int main()
{
freopen("jy.in","r",stdin);
scanf("%d",&n);
fo(i,1,n)
{
fo(j,1,n) scanf("%lf",&a[i][j]);
scanf("%lf",&b[i]);
}
gaosi();
fo(i,1,n) printf("%.3lf ",b[i]);
}