mysql的数据表同步工具 canal的使用

一  canal的扫盲

1.1 canal的介绍

canal是阿里巴巴旗下的一款开源项目,使用java语言进行开发,基于数据库增量日志解析,提供增量数据订阅与消费的功能。是一款很好用的数据库同步工具。目前只支持mysql。

二  canal的搭建

2.1 架构流程

 2.2 配置服务器mysql

canal的原理是基于mysql binlog技术,所以,这里一定要开启mysql的binlog写入的功能。
1.开启mysql服务:service mysqld  start 或  service mysql start
2.检测binlog功能是否开启,如果是off,则没有开启,如果是on表示开启
show variables like 'log_bin';

3.如果binlog的显示为off,则修改配置文件  my.cnf 进行配置开启

vi   /etc/my.cnf

# set zhucongfuzhi
server_id = 86               # 设置服务器编号
log_bin = master-bin        # 启用二进制日志,并设置二进制日志文件前缀 
expire_logs_days=7          #自动清理 7 天前的log文件,可根据需要修改
binlog_format=ROW           #选择row模式

4.重启mysql数据库

切换到 mysql的 隶属用户:hd-mysql

[root@localhost local]# su hd-mysql
[hd-mysql@localhost etc]$ service mysql start
Starting MySQL. SUCCESS! 



重启后,再查看binlog的值,为on,则表示已经开启了。

5.创建远程访问用户,并授权访问

进入mysql的命令模式:

create user 'canal'@'%'IDENTIFIED BY 'boc123'
grant all on *.* to 'canal'@'%'
flush privileges;

mysql> create user 'canal'@'%'IDENTIFIED BY 'boc123';
Query OK, 0 rows affected (0.01 sec)

mysql> grant all on *.* to 'canal'@'%';
Query OK, 0 rows affected (0.01 sec)

mysql> flush privileges;
Query OK, 0 rows affected (0.02 sec)

mysql> 
 

 2.3 配置安装canal同步工具

1.软件包下载地址

Releases · alibaba/canal · GitHub

2.上传软件包到服务器 

 3.解压并修改配置文件

将软件安装到:/usr/local/ 目录下 ,完整路径为 /usr/local/canal  这个目录

[root@localhost local]# mkdir -p canal
[root@localhost local]# cd canal/
[root@localhost canal]# ls
[root@localhost canal]# pwd
/usr/local/canal
[root@localhost canal]# tar -zxvf /root/export/servers/canal.deployer-1.1.6.tar.gz -C .
bin/startup.bat
bin/restart.sh
bin/startup.sh
bin/stop.sh
conf/metrics/
conf/example/
4.修改配置文件

vi conf/example/instance.properties

[root@localhost example]# pwd
/usr/local/canal/conf/example
[root@localhost example]# vi instance.properties 
修改内容如下

mysql 数据解析关注的表,Perl正则表达式.
多个正则之间以逗号(,)分隔,转义符需要双斜杠(\\) 
常见例子:
1.  所有表:.*   or  .*\\..*
2.  canal schema下所有表: canal\\..*
3.  canal下的以canal打头的表:canal\\.canal.*
4.  canal schema(这里的canal是数据库的名字,test1 为表名)下的一张表:canal.test1
5.  多个规则组合使用:canal\\..*,mysql.test1,mysql.test2 (逗号分隔)
注意:此过滤条件只针对row模式的数据有效(ps. mixed/statement因为不解析sql,所以无法准确提取tableName进行过滤) 

3.进入bin目录下启动

1.进入到安装目录: /usr/local/canal

2.启动命令:  sh bin/startup.sh

[root@localhost canal]# ./bin/startup.sh
cd to /usr/local/canal/bin for workaround relative path
LOG CONFIGURATION : /usr/local/canal/bin/../conf/logback.xml
canal conf : /usr/local/canal/bin/../conf/canal.properties

截图如下

  2.4  关闭防火墙

 2.5  编写接收java程序

1.项目结构

 2.pom文件

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <parent>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-parent</artifactId>
    <version>2.2.1.RELEASE</version>
    <relativePath/> <!-- lookup parent from repository -->
  </parent>
  <groupId>com.ljf</groupId>
  <artifactId>canal-demo</artifactId>
  <version>1.0-SNAPSHOT</version>

  <name>canal-demo</name>
  <!-- FIXME change it to the project's website -->
  <url>http://www.example.com</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
  </properties>

  <dependencies>
    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-web</artifactId>
    </dependency>

    <!--mysql-->
    <dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
    </dependency>

    <dependency>
      <groupId>commons-dbutils</groupId>
      <artifactId>commons-dbutils</artifactId>
      <version>1.7</version>
    </dependency>

    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-jdbc</artifactId>
    </dependency>

    <dependency>
      <groupId>com.alibaba.otter</groupId>
      <artifactId>canal.client</artifactId>
      <version>1.1.0</version>
    </dependency>
  </dependencies>

  <build>

  </build>
</project>

3.配置文件

# 服务端口
server.port=10010
# 服务名
spring.application.name=canal-client-t14

# 环境设置:dev、test、prod
spring.profiles.active=dev

# mysql数据库连接
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/xx_db?serverTimezone=GMT%2B8
spring.datasource.username=root
spring.datasource.password=cloudiip

4.处理类

package com.ljf.canal;

import com.alibaba.otter.canal.client.CanalConnector;
import com.alibaba.otter.canal.client.CanalConnectors;
import com.alibaba.otter.canal.protocol.CanalEntry.*;
import com.alibaba.otter.canal.protocol.Message;
import com.google.protobuf.InvalidProtocolBufferException;
import org.apache.commons.dbutils.DbUtils;
import org.apache.commons.dbutils.QueryRunner;
import org.springframework.stereotype.Component;

import javax.annotation.Resource;
import javax.sql.DataSource;
import java.net.InetSocketAddress;
import java.sql.Connection;
import java.sql.SQLException;
import java.util.Iterator;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;

@Component
public class CanalClient {

    //sql队列
    private Queue<String> SQL_QUEUE = new ConcurrentLinkedQueue<>();

    @Resource
    private DataSource dataSource;

    /**
     * canal入库方法
     */
    public void run() {

        CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress("192.168.152.141",
                11111), "example", "canal", "boc123");
        int batchSize = 1000;
        try {
            connector.connect();
            connector.subscribe(".*\\..*");
            connector.rollback();
            try {
                while (true) {
                    //尝试从master那边拉去数据batchSize条记录,有多少取多少
                    Message message = connector.getWithoutAck(batchSize);
                    long batchId = message.getId();
                    int size = message.getEntries().size();
                    if (batchId == -1 || size == 0) {
                        Thread.sleep(1000);
                    } else {
                        dataHandle(message.getEntries());
                    }
                    connector.ack(batchId);

                    //当队列里面堆积的sql大于一定数值的时候就模拟执行
                    if (SQL_QUEUE.size() >= 1) {
                        executeQueueSql();
                    }
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (InvalidProtocolBufferException e) {
                e.printStackTrace();
            }
        } finally {
            connector.disconnect();
        }
    }

    /**
     * 模拟执行队列里面的sql语句
     */
    public void executeQueueSql() {
        int size = SQL_QUEUE.size();
        for (int i = 0; i < size; i++) {
            String sql = SQL_QUEUE.poll();
            System.out.println("[sql]----> " + sql);

            this.execute(sql.toString());
        }
    }

    /**
     * 数据处理
     *
     * @param entrys
     */
    private void dataHandle(List<Entry> entrys) throws InvalidProtocolBufferException {
        for (Entry entry : entrys) {
            if (EntryType.ROWDATA == entry.getEntryType()) {
                RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
                EventType eventType = rowChange.getEventType();
                if (eventType == EventType.DELETE) {
                    saveDeleteSql(entry);
                } else if (eventType == EventType.UPDATE) {
                    saveUpdateSql(entry);
                } else if (eventType == EventType.INSERT) {
                    saveInsertSql(entry);
                }
            }
        }
    }

    /**
     * 保存更新语句
     *
     * @param entry
     */
    private void saveUpdateSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List<RowData> rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List<Column> newColumnList = rowData.getAfterColumnsList();
                StringBuffer sql = new StringBuffer("update " + entry.getHeader().getTableName() + " set ");
                for (int i = 0; i < newColumnList.size(); i++) {
                    sql.append(" " + newColumnList.get(i).getName()
                            + " = '" + newColumnList.get(i).getValue() + "'");
                    if (i != newColumnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(" where ");
                List<Column> oldColumnList = rowData.getBeforeColumnsList();
                for (Column column : oldColumnList) {
                    if (column.getIsKey()) {
                        //暂时只支持单一主键
                        sql.append(column.getName() + "=" + column.getValue());
                        break;
                    }
                }
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }

    /**
     * 保存删除语句
     *
     * @param entry
     */
    private void saveDeleteSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List<RowData> rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List<Column> columnList = rowData.getBeforeColumnsList();
                StringBuffer sql = new StringBuffer("delete from " + entry.getHeader().getTableName() + " where ");
                for (Column column : columnList) {
                    if (column.getIsKey()) {
                        //暂时只支持单一主键
                        sql.append(column.getName() + "=" + column.getValue());
                        break;
                    }
                }
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }

    /**
     * 保存插入语句
     *
     * @param entry
     */
    private void saveInsertSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List<RowData> rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List<Column> columnList = rowData.getAfterColumnsList();
                StringBuffer sql = new StringBuffer("insert into " + entry.getHeader().getTableName() + " (");
                for (int i = 0; i < columnList.size(); i++) {
                    sql.append(columnList.get(i).getName());
                    if (i != columnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(") VALUES (");
                for (int i = 0; i < columnList.size(); i++) {
                    sql.append("'" + columnList.get(i).getValue() + "'");
                    if (i != columnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(")");
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }

    /**
     * 入库
     * @param sql
     */
    public void execute(String sql) {
        Connection con = null;
        try {
            if(null == sql) return;
            con = dataSource.getConnection();
            QueryRunner qr = new QueryRunner();
            int row = qr.execute(con, sql);
            System.out.println("update: "+ row);
        } catch (SQLException e) {
            e.printStackTrace();
        } finally {
            DbUtils.closeQuietly(con);
        }
    }
}

5.启动类

package com.ljf;

import com.ljf.canal.CanalClient;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

import javax.annotation.Resource;

/**
 * Hello world!
 *
 */
@SpringBootApplication
public class  App implements CommandLineRunner
{
    @Resource
    private CanalClient canalClient;
    public static void main( String[] args )
    {
        System.out.println( "Hello World!" );
        SpringApplication.run(App.class, args);
    }

    @Override
    public void run(String... strings) throws Exception {
        //项目启动,执行canal客户端监听
        canalClient.run();
    }
}

6.启动服务

  2.6 测试验证

1.在目的端的数据库,新建一个同样名字的数据库,同样名字的数据表。

如这里源数据库 xx_db, 数据表tb_student;

 目的端:

 2.在源表中新增数据

 3.在目的库中查看

4.查看console

总结: 可以看到新增数据已经同步过来了! 

源代码见:   https://gitee.com/jurf-liu/canal-demo.git

实现MySQL数据实时同步到Elasticsearch可以使用Canal工具。 Canal是阿里巴巴开源的一套基于数据库增量日志解析的数据同步和逆向解析工具,可以实时获取数据库的变更日志,然后将这些变更日志解析成数据并发送到指定的目的地。在实现MySQL数据实时同步到Elasticsearch中,可以使用Canal来实现以下步骤: 1. 安装配置Canal:首先,需要下载并安装Canal,并配置Canal的参数,如MySQL的地址、端口、用户名、密码等。 2. 创建Canal实例:根据实际需求,可以创建一个或多个Canal实例来监控和同步MySQL的变更日志。 3. 配置Elasticsearch目的地:配置Canal将变更日志发送到Elasticsearch作为同步的目的地。 4. 启动Canal实例:通过命令行或脚本启动Canal实例,让Canal开始监控MySQL的变更日志。 5. 解析并同步数据:Canal会实时监控MySQL的变更日志,一旦有变更,就会解析并发送到Elasticsearch。在Elasticsearch中,可以根据业务需求进行相应的处理,比如数据转换、数据筛选、数据拆分等,并将处理后的数据存储到Elasticsearch中。 通过以上步骤,就可以实现MySQL数据的实时同步到Elasticsearch中。Canal工具可以很好地解析MySQL的增量日志并将数据发送到Elasticsearch,保证数据的实时性和一致性。同时,Canal还支持分布式部署和高可用性,可以满足大规模数据同步的需求。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值