统计学习方法笔记-逻辑斯谛回归与最大熵模型

本文详细介绍了逻辑斯谛回归模型及其在二项分类中的应用,包括逻辑斯谛分布的特性以及二项逻辑斯谛回归模型的定义和参数估计方法。同时,文章还探讨了最大熵模型的原理,解释了在满足约束条件下熵最大模型的重要性,并讨论了最大熵模型在分类问题中的学习过程,包括最优化算法和极大似然估计。
摘要由CSDN通过智能技术生成

    逻辑斯谛回归是统计学习中的经典分类方法。最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型。逻辑斯谛回归模型与最大熵模型都属于对数线性模型。

逻辑斯谛回归模型
逻辑斯谛分布:
    设X是连续随机变量,X服从逻辑斯谛分布是指X具有下列的分布函数和密度函数:
                                
式中, μ为位置参数, γ>0为形状参数

    逻辑斯谛分布的密度函数f(x)和分布函数F(x)的图形分别如下图所示,分布函数属于逻辑斯谛函数,图形是一条S行曲线。该曲线以点( μ,1/2)为中心对称,满足:
                                    
曲线在中心点附近增长速度较快,在两端增长速度较慢,形状参数 γ的值越小,曲线在中心附近增长得越快。
                    


二项逻辑斯谛回归模型:
    二项逻辑斯谛回归模型是一种分类模型,由条件概率分布P(Y | X)表示,形式为参数化的逻辑斯谛分布,这里Y的取值为0或1.我们通过监督学习的方法来估计模型参数。
    定义:二项逻辑斯谛回归模型是如下的条件概率分布:
                                        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值