python连接hive配置中遇到的问题及解决方法

1、message=("Could not start SASL: %s" % self.sasl.getError()))
thrift.transport.TTransport.TTransportException: Could not start SASL: b'Error in sasl_client_start (-12) SASL library is not initialized
解决方法:https://blog.csdn.net/wenjun_xiao/article/details/104458940
先直接贴出解决方案,后面再给出分析过程。在Windows中使用管理员权限打开控制台,在控制执行一段命令即可,操作如下。
C:\Windows\system32> FOR /F "usebackq delims=" %A IN (`python -c "from importlib import util;import os;print(os.path.join(os.path.dirname(util.find_spec('sasl').origin),'sasl2'))"`) DO (
  REG ADD "HKEY_LOCAL_MACHINE\SOFTWARE\Carnegie Mellon\Project Cyrus\SASL Library" /v SearchPath /t REG_SZ /d "%A"
)


2、AttributeError: 'TSaslClientTransport' object has no attribute 'readAll'
解决方法:https://www.codeleading.com/article/5868456886/
pip install thrift_sasl==0.3.0
更新依赖thrift_sasl包到0.3.0就可以了

------------------------------------------------------------------------------------

>>> from pyhive import hive
>>> conn = hive.Connection(host='172.100.0.11',port=10000)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "...\Python37\lib\site-packages\pyhive\hive.py", line 192, in __init__
    self._transport.open()
  File "...\Python37\lib\site-packages\thrift_sasl\__init__.py", line 79, in open
    message=("Could not start SASL: %s" % self.sasl.getError()))
thrift.transport.TTransport.TTransportException: Could not start SASL: b'Error in sasl_client_start (-12) SASL library is not initialized
解决方法:先直接贴出解决方案,后面再给出分析过程。在Windows中使用管理员权限打开控制台,在控制执行一段命令即可,操作如下

C:\Windows\system32> FOR /F "usebackq delims=" %A IN (`python -c "from importlib import util;import os;print(os.path.join(os.path.dirname(util.find_spec('sasl').origin),'sasl2'))"`) DO (
  REG ADD "HKEY_LOCAL_MACHINE\SOFTWARE\Carnegie Mellon\Project Cyrus\SASL Library" /v SearchPath /t REG_SZ /d "%A"
)

参考:https://blog.csdn.net/wenjun_xiao/article/details/104458940

### 回答1: 问题:如何使用Spark连接Hive,并将数据保存到Hive解决方法: 1. 确认Hive配置信息 在Spark连接Hive之前,需要确认Hive配置信息是否正确。可以通过以下命令查看Hive配置信息: ``` hive --config /path/to/hive/conf -e "set;" ``` 2. 创建SparkSession对象 使用Spark连接Hive需要创建SparkSession对象,可以通过以下代码创建: ``` from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("Spark Hive Example") \ .config("spark.sql.warehouse.dir", "/path/to/hive/warehouse") \ .enableHiveSupport() \ .getOrCreate() ``` 其,`appName`为应用程序名称,`config`为Hive的仓库目录,`enableHiveSupport`为启用Hive支持。 3. 读取Hive表数据 使用Spark连接Hive后,可以通过以下代码读取Hive表数据: ``` df = spark.sql("SELECT * FROM hive_table") ``` 其,`hive_table`为Hive的表名。 4. 将数据保存到Hive 使用Spark连接Hive后,可以通过以下代码将数据保存到Hive: ``` df.write.mode("overwrite").saveAsTable("hive_table") ``` 其,`mode`为写入模式,`saveAsTable`为保存到Hive。 完整代码示例: ``` from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("Spark Hive Example") \ .config("spark.sql.warehouse.dir", "/path/to/hive/warehouse") \ .enableHiveSupport() \ .getOrCreate() df = spark.sql("SELECT * FROM hive_table") df.write.mode("overwrite").saveAsTable("hive_table") ``` 注意:在使用Spark连接Hive时,需要确保Spark和Hive的版本兼容。 ### 回答2: 问题:如何使用Spark连接Hive并保存数据? 解决方法:要使用Spark连接Hive并保存数据,需要按照以下步骤进行操作: 1. 配置Spark环境:确保安装了Spark和Hive,并在Spark配置文件指定Hive配置信息。 2. 创建SparkSession:在Spark,可以通过创建SparkSession与Hive进行交互。可以使用以下代码创建一个SparkSession对象: ```scala val spark = SparkSession.builder() .appName("Spark Hive Example") .config("spark.sql.warehouse.dir", "/user/hive/warehouse") .enableHiveSupport() .getOrCreate() ``` 3. 加载Hive表数据:可以使用SparkSession的read方法加载Hive表数据,并创建一个DataFrame对象,例如: ```scala val data = spark.read.table("database_name.table_name") ``` 4. 在DataFrame上进行转换和处理:可以对加载的数据进行各种转换和处理操作,例如添加新列、过滤数据等。 5. 保存数据到Hive表:可以使用DataFrame的write方法将数据保存到Hive,例如: ```scala data.write.mode("overwrite").saveAsTable("database_name.table_name") ``` 这将会将数据覆盖性地保存到指定的Hive。 以上就是使用Spark连接Hive并保存数据的基本步骤。通过配置环境、创建SparkSession对象、加载Hive表数据、进行数据转换和处理以及保存数据到Hive表,可以实现Spark与Hive连接和数据操作。 ### 回答3: 问题: 在使用Spark连接Hive并保存数据时,可能会遇到以下问题: 1. 如何在Spark连接Hive? 2. 如何将Spark处理的数据保存到Hive解决方案: 1. 在Spark连接Hive可以通过配置Hive元数据连接来实现。首先,确保在Spark的配置文件,如spark-defaults.conf,设置了Spark的master地址。然后,引入Hive的依赖,创建一个SparkSession对象,并设置其配置属性hive.metastore.uris为Hive的元数据存储地址。例如: ```python from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("Spark Connect Hive") \ .config("spark.master", "local") \ .config("spark.sql.warehouse.dir", "hdfs://<HDFS路径>") \ .config("hive.metastore.uris", "thrift://<Hive元数据存储地址>") \ .enableHiveSupport() \ .getOrCreate() ``` 在这个示例,我们使用`enableHiveSupport()`来启用Hive支持,并设置了Hive的元数据存储地址。 2. 将Spark处理的数据保存到Hive可以使用Spark的DataFrame API或SQL语句来实现。首先,通过Spark从各种数据源(如HDFS、关系型数据库等)读取数据,并转换为DataFrame。然后,使用DataFrame的`write.saveAsTable(<表名>)`方法将数据保存到Hive。例如: ```python # 从HDFS读取数据并转换为DataFrame df = spark.read.load("hdfs://<HDFS路径>") # 将DataFrame保存到Hive df.write.saveAsTable("<表名>") ``` 通过上述代码,我们可以将DataFrame保存为Hive表。还可以根据需要使用其他选项,如`mode`来指定保存模式(例如追加、覆盖等),以及`partitionBy`来指定分区列。 总结: 通过设置Spark的配置属性,我们可以在Spark连接Hive。然后,通过使用Spark的DataFrame API或SQL语句,我们可以将Spark处理的数据保存到Hive
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值