Bitwise AND of Numbers Range

Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers in this range, inclusive.

For example, given the range [5, 7], you should return 4.

观察连续若干个数在各个bit上的分布情况,可以得出分布规律。在第k位,总是会交替出现2^(k-1)个0和2^(k-1)个1.所以如果n-m+1大于2^(k-1),则在后k位的每一位上,至少会有一个数是0,所以n-m+1个数的AND和在后k位上必然都是0. 至于在高于k位的,这n-m-1个是在这个位上要么都是0要么都是1,要么m是0而n是1,要么m是1而n是0.

算法时间复杂度为log(n-m+1)

class Solution {
public:
    int rangeBitwiseAnd(int m, int n) {
        //连续若干个数在第k位上总是2^(k-1)个0、2^(k-1)个1交替出现,这是解答本题的关键
        long long tmp = 1,k = 0;
        while(tmp < n-m+1){ tmp<<=1; k++; }  //tmp==2^k >= n-m+1;
        k+=1;  //2^(k-1)>=n-m+1; 
        tmp = 1;
        int res = 0;
       
        for(; (tmp<<(k-1)) <= m; k++){ //若2^(k-1) > m,则说明至少m在第k位是0
        
            if((tmp<<(k-1))<n-m+1) continue; //2^(k-1) < n-m+1说明n-m+1个连续的数中至少有1个数在第k位是0
            
            int a = (m>>(k-1))&1;  //求m的第k位
            int b = (n>>(k-1))&1;  //n的第k位
            if(a==1 && b==1) res += (1<<(k-1));  //说明[m,n]所有的数的第k位都是1
        }
        
        return res;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值