如何保证hive中数据的质量?

首先,数据出现质量问题有哪些原因或者情况?

其次,针对这些原因,制定清洗策略。

一般的数据质量出现问题的有:无效,重复,缺失,不一致,错误值,格式出错,业务逻辑规则有问题,抽取数据程序有错等,另外还有就是统计口径不一致,也会导致看到的数据不是想要的。

根据这些情况,如何清洗?人工,还是编写程序?这个依据数据量大小及挖掘系统要求看吧。如果出现这类型的错误很多,一定要写程序自动清洗,如果只是小量的不影响的,可以忽略不计。

  1. 问题扩展

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据架构师Pony

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值