Flink自定义事件事件和水位线

目录

 

主类

pom.xml

结果输出


主类

package myflink.EventTime;

import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;

import java.text.SimpleDateFormat;
import java.util.Date;


/**
 * @author pangsl
 * @date 2021/5/25 17:02
 * @Description Flink自定义事件事件和水位线
 */
public class WindowAndWatermarkDemo {
    public static void main(String[] args) throws Exception {


        StreamExecutionEnvironment sEnv = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置使用EventTime,默认使用processtime
        sEnv.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        //设置并行度为1,默认并行度是当前机器的CPU数量
        sEnv.setParallelism(1);


        DataStream<String> input = sEnv.addSource(new MySource());
        /*消息格式:String,time。例如:消息1,15115556459354*/
        //解析输入的数据
        DataStream<Tuple2<String, Long>> inputMap = input.map(new MapFunction<String, Tuple2<String, Long>>() {

            @Override
            public Tuple2<String, Long> map(String value) throws Exception {
                String[] arr = value.split(",");
                return new Tuple2<>(arr[0], Long.parseLong(arr[1]));
            }
        });
        //抽取timestamp,生成Watermar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据架构师Pony

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值