Problem Description
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。 每一次合并,
多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。
多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和
每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将 1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,
又得到新的堆,数目为12,耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
Input
输入有多组数据,每组数据的第一行是一个整数n(1 <= n <= 30000),表示果子的种类数。第二行包含n个整数,用空格分隔,
第i个整数ai(1 <= ai <= 20000)是第i种果子的数目。
Output
对于每组数据输出一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231。
Sample Input
3
1 2 9
Sample Output
15
//关键字:优先队列 或 堆操作;
//标程:
<1>优先队列
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;
struct cmp
{
bool operator () (int &a,int &b)
{
return a>b;
}
};
int main()
{
//freopen("a.txt","r",stdin);
int n,i,a;
while(scanf("%d",&n)!=EOF)
{
priority_queue<int,vector<int>,cmp> q;
for(i=0;i<n;i++)
{
scanf("%d",&a);
q.push(a);
}
int sum=0;
while(q.size()>1)
{
int b,c;
b=q.top();
q.pop();
c=q.top();
q.pop();
q.push(b+c);
sum=sum+b+c;
}
printf("%d\n",sum);
}
return 0;
}
<2> 堆操作
#include<stdio.h>
#include<string.h>
int p[30500],len;
void f(int x)
{
p[++len]=x;
int yy=len,temp=0,xx=0;
while(yy>1)
{
xx=yy/2;
if(p[xx]<=p[yy]) break;
temp=p[xx], p[xx]=p[yy], p[yy]=temp;
yy=xx;
}
}
void fun()
{
int j;
p[1]=p[len--];
int x=1,y=0,temp;
while(x*2<=len)
{
y=2*x;
if(y<len && p[y+1]<p[y]) y++;
if(p[x]<p[y]) break;
temp=p[x], p[x]=p[y], p[y]=temp;
x=y;
}
}
int main()
{
//freopen("a.txt","r",stdin);
int n,i,a,j;
while(scanf("%d",&n)!=EOF)
{
memset(p,0,sizeof(p));
len=0;
for(i=1;i<=n;i++)
{
scanf("%d",&a);
f(a);
}
int sum1=0,sum2=0,sum=0;
for(i=1;i<n;i++)
{
sum1=p[1];
fun();
sum2=p[1];
fun();
sum=sum+sum1+sum2;
f(sum1+sum2);
}
printf("%d\n",sum);
}
return 0;
}
合并果子
最新推荐文章于 2023-02-14 16:29:11 发布