合并果子

Problem Description
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。 每一次合并,
多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。
多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和
每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将 1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,
又得到新的堆,数目为12,耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
Input
输入有多组数据,每组数据的第一行是一个整数n(1 <= n <= 30000),表示果子的种类数。第二行包含n个整数,用空格分隔,
第i个整数ai(1 <= ai <= 20000)是第i种果子的数目。
Output
对于每组数据输出一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231。
Sample Input
3
1 2 9
Sample Output
15
//关键字:优先队列  或 堆操作;
//标程:
<1>优先队列
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;
struct cmp
{
	bool operator () (int &a,int &b)
	{
		return a>b;
	}
};
int main()
{
	//freopen("a.txt","r",stdin);
        int n,i,a;
	while(scanf("%d",&n)!=EOF)
	{
		priority_queue<int,vector<int>,cmp> q;
		for(i=0;i<n;i++)
		{
			scanf("%d",&a);
			q.push(a);
		}
		int sum=0;
                while(q.size()>1)
		{
			int b,c;
			b=q.top();
			q.pop();
			c=q.top();
			q.pop();
			q.push(b+c);
			sum=sum+b+c;
		}
        printf("%d\n",sum);
	}
 
	return 0;
}

<2>   堆操作
#include<stdio.h>
#include<string.h>
int p[30500],len;
void  f(int x)
{
	p[++len]=x;
	int yy=len,temp=0,xx=0;
	while(yy>1)
	{
        xx=yy/2;
	 	if(p[xx]<=p[yy]) break;
		temp=p[xx], p[xx]=p[yy], p[yy]=temp;
		yy=xx;
	}
}
void fun()
{
 	int j;
    p[1]=p[len--];
	int x=1,y=0,temp;
	while(x*2<=len)
	{
        y=2*x;
        if(y<len && p[y+1]<p[y])  y++;
		if(p[x]<p[y])  break;
		temp=p[x], p[x]=p[y], p[y]=temp;
		x=y;
	}
}
int main()
{
	//freopen("a.txt","r",stdin);
        int n,i,a,j;
        while(scanf("%d",&n)!=EOF)
	{
		memset(p,0,sizeof(p));
		len=0;     
		for(i=1;i<=n;i++)
		{
			scanf("%d",&a);
			f(a);
		}
		int sum1=0,sum2=0,sum=0;
		for(i=1;i<n;i++)
		{
			sum1=p[1];
			fun();
			sum2=p[1];
			fun();
			sum=sum+sum1+sum2;
			f(sum1+sum2);
		}
		printf("%d\n",sum);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值