# 用MATLAB 实现的混合高斯模型

clear all

% -----------------------  frame size variables -----------------------
%fr = step(v); % read the next video frame
%fr = v(1).cdata; % read in 1st frame as background frame
fr_bw = rgb2gray(fr);     % convert background to greyscale
fr_size = size(fr);
width = fr_size(2);
height = fr_size(1);
fg = zeros(height, width);
bg_bw = zeros(height, width);

% --------------------- gmm variables -----------------------------------

C = 3;                                  % number of gaussian components (typically 3-5)
M = 3;                                  % number of background components
D = 2.5;                                % positive deviation threshold
alpha = 0.005;                           % learning rate (between 0 and 1) (from paper 0.01)
thresh = 0.25;                          % foreground threshold (0.25 or 0.75 in paper)
sd_init = 30/255;                            % initial standard deviation (for new components) var = 36 in paper
w = zeros(height,width,C);              % initialize weights array
mean = zeros(height,width,C);           % pixel means
sd = zeros(height,width,C);             % pixel standard deviations
u_diff = zeros(height,width,C);         % difference of each pixel from mean
p = alpha/(1/C);                        % initial p variable (used to update mean and sd)
rank = zeros(1,C);                      % rank of components (w/sd)

% --------------------- initialize component means and weights -----------

pixel_depth = 8;                        % 8-bit resolution
pixel_range = 2^pixel_depth -1;         % pixel range (# of possible values)

for i=1:height
for j=1:width
for k=1:C

mean(i,j,k) = rand*pixel_range;     % means random (0-255)
w(i,j,k) = 1/C;                     % weights uniformly dist
sd(i,j,k) = sd_init;                % initialize to sd_init

end
end
end

%--------------------- process frames -----------------------------------

for n = 1:150
%fr = step(v);
%fr = v(n).cdata;       % read in frame
fr_bw = rgb2gray(fr);       % convert frame to grayscale
figure(1),subplot(3,1,1),imshow(fr)
% calculate difference of pixel values from mean
for m=1:C
u_diff(:,:,m) = abs(double(fr_bw) - double(mean(:,:,m)));
end

% update gaussian components for each pixel
for i=1:height
for j=1:width

match = 0;
for k=1:C
if (abs(u_diff(i,j,k)) <= D*sd(i,j,k))       % pixel matches component

match = 1;                          % variable to signal component match

% update weights, mean, sd, p
w(i,j,k) = (1-alpha)*w(i,j,k) + alpha;
p = alpha/w(i,j,k);
mean(i,j,k) = (1-p)*mean(i,j,k) + p*double(fr_bw(i,j));
sd(i,j,k) =   sqrt((1-p)*(sd(i,j,k)^2) + p*((double(fr_bw(i,j)) - mean(i,j,k)))^2);
else                                    % pixel doesn't match component
w(i,j,k) = (1-alpha)*w(i,j,k);      % weight slighly decreases

end
end

w(i,j,:) = w(i,j,:)./sum(w(i,j,:));

bg_bw(i,j)=0;
for k=1:C
bg_bw(i,j) = bg_bw(i,j)+ mean(i,j,k)*w(i,j,k);
end

% if no components match, create new component
if (match == 0)
[min_w, min_w_index] = min(w(i,j,:));
mean(i,j,min_w_index) = double(fr_bw(i,j));
sd(i,j,min_w_index) = sd_init;
end

rank = w(i,j,:)./sd(i,j,:);             % calculate component rank
rank_ind = [1:1:C];

% sort rank values
for k=2:C
for m=1:(k-1)

if (rank(:,:,k) > rank(:,:,m))
% swap max values
rank_temp = rank(:,:,m);
rank(:,:,m) = rank(:,:,k);
rank(:,:,k) = rank_temp;

% swap max index values
rank_ind_temp = rank_ind(m);
rank_ind(m) = rank_ind(k);
rank_ind(k) = rank_ind_temp;

end
end
end

% calculate foreground
match = 0;
k=1;

fg(i,j) = 0;
while ((match == 0)&&(k<=M))

if (w(i,j,rank_ind(k)) >= thresh)
if (abs(u_diff(i,j,rank_ind(k))) <= D*sd(i,j,rank_ind(k)))
fg(i,j) = 0;
match = 1;
else
fg(i,j) = fr_bw(i,j);
end
end
k = k+1;
end
end
end

%figure(1),subplot(3,1,1),imshow(fr)
subplot(3,1,2),imshow(uint8(bg_bw))
subplot(3,1,3),imshow(uint8(fg))

se = strel('square', 3);
filteredForeground = imopen(uint8(fg), se);
figure(2); imshow(filteredForeground); title('Clean Foreground');

blobAnalysis = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
'AreaOutputPort', false, 'CentroidOutputPort', false, ...
'MinimumBlobArea', 150);
bbox = step(blobAnalysis, logical(filteredForeground));

result = insertShape(fr, 'Rectangle', bbox, 'Color', 'green');

numCars = size(bbox, 1);
result = insertText(result, [10 10], numCars, 'BoxOpacity', 1, ...
'FontSize', 14);
figure (3); imshow(result); title('Detected Cars');

%Mov1(n)  = im2frame(uint8(fg),gray);           % put frames into movie
%Mov2(n)  = im2frame(uint8(bg_bw),gray);           % put frames into movie

end

%movie2avi(Mov1,'mixture_of_gaussians_output','fps',3);           % save movie as avi
%movie2avi(Mov2,'mixture_of_gaussians_background','fps',30);           % save movie as avi