群论 和 拓扑学

群论研究对称性,拓扑学关注连续变化的不变性。两者看似无关,但实际上在数学发展中产生了交集。拓扑群论研究加了拓扑结构的群,而代数拓扑则在拓扑空间中引入群概念,通过分析代数不变量对空间进行分类。群和拓扑的结合在物理学等领域中扮演关键角色,如李群在现代物理的基础地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

群论,主要研究的是各种对称性。可以说,群就是对称性的本质。群论生来就属于代数的范畴。可以追溯到阿贝尔和伽罗瓦。

拓扑学,研究的是空间中连续变化的不变性。拓扑学是脱胎于分析。可以追溯到欧拉。

两个理论刚提出的时候,的确也没什么关系。 

但数学毕竟是研究抽象结构的学科,在一个分支里碰见另一个分支研究的结构是常事,而往往这样的情况就会导致交叉分支的产生,很多非常漂亮的数学就是这样来的。于是,在这里有两种可能性:群论中出现了拓扑结构,或者拓扑研究中出现了群。

我们先来谈第一种情况。群就是对称性,一般我们说到对称性,都会想起梅花的五重对称之类的有限对称性,但无限的对称性也是存在的。如果将群的元素的集合看成一个空间,有时候我们可以定义相应的拓扑空间,使得群的运算跟拓扑空间本身能和谐共处,用数学术语来说,就是令群的运算和逆元都成为拓扑空间中的连续映射。这样的话,群加上群上面定义的拓扑空间,就变成了所谓的“拓扑群”。拓扑群无处不在,比如说实数和加法组成的群,再加上我们一般定义的实数上的拓扑,就是一个拓扑群。

研究拓扑群的数学分支,就是拓扑群论。因为群是一个非常好的结构,拥有很多很规整的性质,所以在它上面定义的拓扑空间通常也会有很好的性质。而通过一些拓扑性质,比如说紧性,我们可以将有限群论中的很多结论推广到某些无限的拓扑群上。在有了拓扑之后,我们下一步还可以给群加上测度,比如说最自然的哈尔测度,由此又可以进入更广泛的调和分析这个领域。拓扑群论中研究的一些群也非常重要,比如说李群,几乎就是现代物理的数学基础之一。

另一个方向,就是在拓扑研究中出现的群。这主要就是代数拓扑这个分支会做的事情。在这个分支中,我们用到的不仅有群,还有别的代数结构。在代数拓扑中,我们通常会尝试向拓扑空间赋予某种代数结构,然后通过分析这些代数结构,找出一些可以对这些空间进行分类的代数不变量。

举个例子,给定一个二维紧致闭曲面,我们可以通过合适的三角剖分来在上面构造一个图。如果考虑图的环路组成的群,以及它跟三角形三条边加起来生成的群的话,两者的商就给出了一个自由群,而这个自由群的生成元个数就对应着曲面的欧拉不变量,也就是唯一的拓扑不变量。当然,在这个情况下可以通过直接计算图的欧拉示性数来得到欧拉不变量,但我们刚刚说到的方法可以轻易推广到更高的维度,这其实就是所谓的同调群。由此派生出的上同调群是代数几何中承前启后的重要数学对象。

所以说,这两个领域虽然看似没有关系,但随着数学的发展,它们之间就自然发生了关系。这样的故事,在许多不同的数学分支之间也在上映着。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

globalcoding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值