论文笔记| The Emergence, Advancement and Future of Textual Answer Triggering

这篇论文深入探讨了答案触发任务,分析了WiKiQA和SELQA数据集的特性,介绍了SELQA-RNN、IARNN-Gate等模型,并讨论了句法相似性偏差、辅助内容导致的偏差及固定阈值问题等挑战,提出了解决方案。
摘要由CSDN通过智能技术生成

作者:李瑾
单位:燕山大学


论文地址


这篇论文发表于2020年,详细且全面介绍了答案触发这一任务当前的发展以及面临的挑战。

一、 Dataset

  第一个公开的答案触发数据集WiKiQA 于2015年与答案触发这一任务同时提出,紧接着2016年提出了另一个数据集SELQA。

两个数据集不同点

  • 构建方式与数据比例不同:WiKiQA数据集中的问题都是真实的Bing搜索,未经编辑,是真实场景下的数据。该数据集分为两部分,一部分用于答案触发任务,另一部分用于答案选择任务。用于答案触发任务的数据集中有大约60%的问题没有正确答案;SELQA数据集是人工创建的,数据量相比WiKiQA数据集要大得多,正确回答的数据量也相对较多,同时主题也更丰富。这样看来,WiKiQA数据集挑战更大。

两个数据集的数据分布如下:

WiKiQA数据集

SELQA数据集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值