markdown练习~高数笔记(微分方程)

高等数学

第七章 微分方程

7.1微分方程的基本概念

引例

​ 曲线上任意一点处的切线斜率等于该点的横坐标的平方,且曲线过坐标的原点,求曲线的方程
y = f ( x ) 已 知 : { d x d y = x 2 y ( 0 ) = 0 \\y = f(x) \\ 已知:\begin{cases}{} \frac{dx}{dy} = x^2 \\y(0)=0 \end{cases} y=f(x){dydx=x2y(0)=0
微分方程的定义:含有未知函数其导数或微分的方程,称之为微分方程

​ 微分方程通过积分来求解

​ ps:微分方程分为 常微分方程(常用)、偏微分方程

微分方程的几何意义:方向场

微分方程通解的几何意义:一簇积分曲线。 特解:为其中的一条积分曲线


常见的概念

方程的阶:含有未知函数导数方程中其导数的最高阶数
一 阶 微 分 方 程 的 一 般 形 式 : F ( x , y , y ′ ) = 0 二 阶 微 分 方 程 的 一 般 形 式 : F ( x , y , y ′ , y " ) = 0 n 阶 微 分 方 程 的 一 般 形 式 F ( x , y , y ′ , … … , y ( n ) ) \\一阶微分方程的一般形式:F(x, y, y') = 0 \\二阶微分方程的一般形式:F(x, y, y', y") = 0 \\n阶微分方程的一般形式F(x, y, y', ……, y^(n)) Fx,y,y=0F(x,y,y,y")=0nF(x,y,y,,y(n))
方程的解:满足微分方程的函数

n阶微分方程的含有n个独立任意常数的解 通解

没有任意常数的解 特解(初始条件)

隐式解、显式解函数
隐 式 解 : y = y ( x ) 显 式 解 : F ( x , y ) = 0 \\隐式解: \quad \quad \quad \quad y = y(x) \\显式解: \quad \quad \quad \quad F(x, y) = 0 y=y(x)F(x,y)=0

7.2可分离变量的微分方程

一 阶 微 分 方 程 的 一 般 形 式 : F ( x , y , y ′ ) = 0 d x d y = f ( x , y ) 的 几 何 意 义 : 方 向 场 \\一阶微分方程的一般形式:F(x, y, y') = 0 \\ \frac{dx}{dy} = f(x, y)的几何意义:方向场 Fx,y,y=0dydx=f(x,y)

可分离变量的微分方程

方程类型 M1(x)N1(y)dx + M2(x)N2(y)dy = 0

例题
求 微 分 方 程 y ′ = 2 x y 的 通 解 改 写 : d x d y = 2 x y , 分 离 变 量 : 1 y d y = 2 x d x 积 分 : ∫ 1 y d y = ∫ 2 x d x 简 便 写 法 ln ⁡ y = x 2 + ln ⁡ C = ln ⁡ e x 2 + ln ⁡ C = ln ⁡ C e x 2 通 解 : y = C e x \\求微分方程 y' = 2xy的通解 \\改写: \frac{dx}{dy} = 2xy, \quad \quad 分离变量:\frac{1}{y}dy=2xdx \\积分: \int \frac{1}{y}dy = \int 2x dx \quad \quad \color{red}{简便写法} \\ \ln y = x^2 + \ln C = \ln e^{x^2} +\ln C = \ln Ce^{x^2} \\通解: y = Ce^x y=2xydydx=2xy,y1dy=2xdxy1dy=2xdx便lny=x2+lnC=lnex2+lnC=lnCex2y=Cex
对于一些不能分离变量的微分方程,可使用变量替换

例题
{ d x d y = 1 x − y + 1 y ( 0 ) = 1 令 x − y = z , y = x − z 得 d y d x = 1 − d z d x 常 规 积 分 后 即 可 获 得 答 案 \begin{cases} \frac{dx}{dy} = \frac{1}{x-y} + 1 \\y(0) = 1 \end{cases} \\令 x - y = z, y = x - z \\得\frac{dy}{dx} = 1 - \frac{dz}{dx} \\常规积分后即可获得答案 {dydx=xy1+1y(0)=1xy=z,y=xzdxdy=1dxdz

7.3齐次方程

齐次方程的一般形式
M ( x , y ) d x + N ( x , y ) d y = 0 M(x,y)dx + N(x, y)dy = 0 M(x,y)dx+N(x,y)dy=0
方程的标准形式
d y d x = f ( y x ) \\ \frac{dy}{dx} = f(\frac{y}{x}) dxdy=f(xy)
一般来说,齐次方程不能分离变量

解法如下,令y/x = u

遇见齐次方程不可解时,可通过求倒数的方式来简化运算
d y d x = y x + x 2 + y 2 倒 过 来 : d x d y = x + x 2 + y 2 y = x y + ( x y ) 2 + 1 \\ \frac{dy}{dx}= \frac {y}{x+\sqrt {x^2+y^2}} \\倒过来: \\ \frac{dx}{dy}= \frac{x+ \sqrt {x^2+y^2} }{y}= \frac {x}{y}+ \sqrt{(\frac{x}{y})^2+1} dxdy=x+x2+y2 ydydx=yx+x2+y2 =yx+(yx)2+1
一阶线性方程通解:

y = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x + C ) y = e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}+C) y=eP(x)dx(Q(x)eP(x)dx+C)

求一阶线性微分方程的通解方法称之为常数变易法,

实例

例一 求方程
d x d y − 2 y x + 1 = ( x + 1 ) 5 2 的 通 解 解 : 这 是 一 个 非 齐 次 的 线 性 方 程 , 先 求 对 应 的 齐 次 方 程 的 通 解 。 d y d x − 2 x + 1 y = 0 , d y y = 2 d x x + 1 , ln ⁡ y = 2 ln ⁡ ( x + 1 ) + ln ⁡ C , y = C ( x + 1 ) 2 用 常 数 变 易 法 , 将 C 换 成 u , 即 令 y = u ( x + 1 ) 2 ∗ 那 么 d y d x = u ′ ( x + 1 ) 2 + 2 u ( x + 1 ) 代 入 题 目 中 所 给 非 齐 次 方 程 可 得 u ′ = ( x + 1 ) 1 2 两 端 积 分 得 u = 2 3 ( x + 1 ) 3 2 + C 代 入 ∗ 式 , 可 得 通 解 y = ( x + 1 ) 2 [ 2 3 ( x + 1 ) 3 2 + C ] \frac{dx}{dy}- \frac{2y}{x+1}= (x+1)^{\frac{5}{2}} \\的通解 \\解: 这是一个非齐次的线性方程,先求对应的齐次方程的通解。 \\ \frac{dy}{dx}- \frac{2}{x+1}y = 0, \\ \frac{dy}{y}= \frac{2dx}{x+1}, \\ \ln y = 2 \ln (x+1) + \ln C, \\y = C(x+1)^2 \\用 \color {red}{常数变易法},将C换成u,即令 \\y= u(x+1)^2 \quad \quad \quad \quad \quad * \\那么 \frac{dy}{dx}= u'(x+1)^2 +2u(x+1) \\代入题目中所给非齐次方程 \\可得 u'= (x+1)^{\frac{1}{2}} \\两端积分得 u=\frac{2}{3}(x+1)^{\frac{3}{2}}+C \\代入*式,可得通解y=(x+1)^2[\frac{2}{3}(x+1)^{\frac{3}{2}}+C] dydxx+12y=(x+1)25线dxdyx+12y=0,ydy=x+12dx,lny=2ln(x+1)+lnC,y=C(x+1)2Cuy=u(x+1)2dxdy=u(x+1)2+2u(x+1)u=(x+1)21u=32(x+1)23+Cy=(x+1)2[32(x+1)23+C]
一阶线性微分方程的解得结构

y = y ‾ + y ∗ y = \overline{y} + y^* y=y+y

伯努利方程

​ $ y’ + P(x)y = Q(x)y^n $

​ $ condition: (n \ne 0, 1)$

​ 当n=0时,该方程为非齐次线性方程

​ 当n=1时,该方程为齐次线性方程

具体解法
y ′ + P ( x ) y = Q ( x ) y n 方 程 两 端 同 时 除 以 y n y − n y ′ + y − n P ( x ) y = Q ( x ) ( 1 1 − n y 1 − n ) ′ + P ( x ) y 1 − n = Q ( x ) 方 程 两 端 同 时 乘 以 ( 1 − n ) ( y 1 − n ) ′ + ( 1 − n ) P ( x ) y 1 − n = ( 1 − n ) Q ( x ) 令 y 1 − n = z 根 据 通 解 公 式 可 得 y 1 − n = e ( n − 1 ) ∫ P ( x ) d x [ ( 1 − n ) ∫ Q ( x ) e ( 1 − n ) ∫ P ( x ) d x d x + C ] \\y' + P(x)y = Q(x)y^n \\方程两端同时除以y^n \\y^{-n}y' + y^{-n}P(x)y = Q(x) \\(\frac{1}{1-n}y^{1-n})' + P(x)y^{1-n} = Q(x) \\方程两端同时乘以(1-n) \\(y^{1-n})' + (1-n)P(x)y^{1-n} = (1-n)Q(x) \\令y^{1-n} = z \\根据通解公式可得 \\y^{1-n} = e^{(n-1)\int P(x)dx}[(1-n)\int Q(x)e^{(1-n)\int P(x)dx}dx + C] y+P(x)y=Q(x)ynynyny+ynP(x)y=Q(x)(1n1y1n)+P(x)y1n=Q(x)1n(y1n)+(1n)P(x)y1n=(1n)Q(x)y1n=zy1n=e(n1)P(x)dx[(1n)Q(x)e(1n)P(x)dxdx+C]

7.4高阶线性微分方程
可降阶的高阶微分方程

  • 形如 y ( n ) = f ( x ) y^{(n)} = f(x) y(n)=f(x) 可通过不断积分来求解

  • 形如 F ( x , y ′ , y " ) = 0 F(x, y', y") = 0 F(x,y,y")=0 , 可通过令 y ′ = p , y ′ ′ = d p d x y'= p, y''= \frac{dp}{dx} y=p,y=dxdp

    ​ 使得其变为 F ( x , p , d p d x ) F(x, p, \frac{dp}{dx}) F(x,p,dxdp)

  • 形如 F ( y , y ′ , y " ) = 0 F(y, y', y")=0 F(y,y,y")=0 , 可通过令 y ′ = p , y ′ ′ = p d p d y y'= p, y'' = p\frac{dp}{dy} y=p,y=pdydp

    ​ 使得其变为 F ( y , p , p d p d y ) F( y, p, p\frac{dp}{dy}) F(y,p,pdydp)

二阶线性微分方程

齐次线性方程的解的叠加原理

定理1:
设 y = y 1 ( x ) 和 y = y 2 ( x ) 是 二 阶 齐 次 线 性 方 程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 的 两 个 解 , 则 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) 也 是 齐 次 线 性 方 程 的 解 \\设y = y_1(x) 和 y=y_2(x)是二阶齐次线性方程 \\y'' + P(x)y' + Q(x)y = 0 \\的两个解,则 \\y=C_1y_1(x)+C_2y_2(x) \\也是齐次线性方程的解 y=y1(x)y=y2(x)线y+P(x)y+Q(x)y=0y=C1y1(x)+C2y2(x)线
定理2:

注意: C1 和 C2 应该线性无关,否则无法构成通解
设 y = y 1 ( x ) 和 y = y 2 ( x ) 是 二 阶 齐 次 线 性 方 程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 的 两 个 线 性 无 关 的 解 , 则 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) 是 二 阶 齐 次 方 程 的 通 解 \\设y = y_1(x) 和 y=y_2(x)是二阶齐次线性方程 \\y'' + P(x)y' + Q(x)y = 0 \\的两个线性无关的解,则 \\y=C_1y_1(x)+C_2y_2(x) \\是二阶齐次方程的通解 y=y1(x)y=y2(x)线y+P(x)y+Q(x)y=0线y=C1y1(x)+C2y2(x)
定理3:(非齐次线性方程的解的结构)
y = Y + y ∗ 为 该 非 齐 次 线 性 方 程 解 的 结 构 y = Y + y^* \\为该非齐次线性方程解的结构 y=Y+y线
注意:非齐次线性方程的两个解的差是对应齐次方程的解

故根据上述定理可得,若我们想求得二阶常系数齐次微分方程的通解,仅需要求出两个线性无关的解

欧拉公式
e θ i = cos ⁡ θ + i sin ⁡ θ e^{\theta i} = \cos \theta + i \sin \theta eθi=cosθ+isinθ
总结:

特征方程微分方程
r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y+py+qy=0
特征根通解
Δ > 0 \Delta>0 Δ>0 r 1 ≠ r 2 r_1 \ne r_2 r1=r2 y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
Δ = 0 \Delta=0 Δ=0 r 1 = r 2 = r r_1=r_2=r r1=r2=r y = ( C 1 + C 2 x ) e ( r x ) y=(C_1+C_2x)e^{(rx)} y=(C1+C2x)e(rx)
Δ < 0 \Delta<0 Δ<0 r = a ± β i r=a \pm \beta i r=a±βi y = e a x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{ax}(C_1\cos \beta x +C_2 \sin \beta x) y=eax(C1cosβx+C2sinβx)

n阶线性齐次微分方程的通解
根 据 特 征 方 程 求 出 特 征 根 若 为 单 根 , 则 为 e r x 若 为 重 根 , 则 其 为 e r x , x e r x , … … , x k − 1 e r x 若 为 一 对 k 重 共 轭 复 根 , 则 以 r = a ± β i e a x cos ⁡ β x , … … , x k − 1 e a x cos ⁡ β x e a x sin ⁡ β x , … … , x k − 1 e a x sin ⁡ β x \\根据特征方程求出特征根 \\若为单根,则为e^{rx} \\若为重根,则其为e^{rx}, xe^{rx},……, x^{k-1}e^{rx} \\若为一对k重共轭复根,则以r = a \pm \beta i \\ e^{ax} \cos \beta x, ……, x^{k-1}e^{ax} \cos \beta x \\ e^{ax} \sin \beta x, ……, x^{k-1}e^{ax} \sin \beta x erxerx,xerxxk1erxkr=a±βieaxcosβx,xk1eaxcosβxeaxsinβx,xk1eaxsinβx
二阶常系数非齐次线性微分方程的求解步骤
I 型 f ( x ) = P m ( x ) e λ x y ′ ′ + p y ′ + q y = P m ( x ) e λ x \\ \color{blue}{I型} \\ f(x) = P_m(x)e^{ \lambda x} \\ y'' + py' + qy = P_m(x)e^{ \lambda x} If(x)=Pm(x)eλxy+py+qy=Pm(x)eλx
使用的通解公式为
Q ′ ′ ( x ) + ( 2 λ + p ) Q ′ ( x ) + ( λ 2 + p λ + q ) Q ( x ) = P m ( x ) \\ \color{red}{Q''(x) + (2\lambda + p)Q'(x) + (\lambda ^2 + p\lambda +q)Q(x) = P_m(x)} Q(x)+(2λ+p)Q(x)+(λ2+pλ+q)Q(x)=Pm(x)
解法:
设 特 解 为 : y ∗ = Q ( x ) e λ x , 则 y ′ ′ + p y ′ + q = 0 可 得 : y ∗ = x k Q m ( x ) e λ x k = { 0 , 当 λ 不 是 特 征 根 1 , 当 λ 是 特 征 单 根 2 , 当 λ 是 特 征 重 根 注 意 : m 是 对 应 得 次 数 \\设特解为: y^* = Q(x)e^{\lambda x}, 则y'' + py' + q = 0 \\可得: \\ \color{red} {y^* = x^k Q_m(x)e^{\lambda x}} \\ \color {red} k=\begin{cases} 0, 当\lambda 不是特征根 \\1, 当\lambda 是特征单根 \\2, 当\lambda 是特征重根 \end{cases} \\ \color{red} {注意:m是对应得次数} y=Q(x)eλx,y+py+q=0y=xkQm(x)eλxk=0,λ1,λ2,λm
小技巧:
当 高 阶 线 性 微 分 方 程 过 于 复 杂 时 , 可 以 对 等 式 右 边 进 行 拆 分 形 如 y ′ ′ + 3 y ′ = 3 x e − 3 x + x 如 果 面 对 的 方 程 里 还 有 积 分 , 优 先 考 虑 求 导 形 如 φ ( x ) = e x + ∫ 0 x t φ ( t ) d t − x ∫ 0 x φ ( t ) d t \\当高阶线性微分方程过于复杂时,可以对等式右边进行拆分 \\形如y'' + 3y' = 3xe^{-3x} + x \\如果面对的方程里还有积分,优先考虑 \color {red}{求导} \\形如\varphi (x) = e^x + \int_0^x t \varphi(t)dt - x \int_0^x \varphi (t)dt 线y+3y=3xe3x+xφ(x)=ex+0xtφ(t)dtx0xφ(t)dt



I I 型 f ( x ) = e λ x [ P l ( x ) cos ⁡ ω x + P n ( x ) sin ⁡ ω x ] y ′ ′ + p y ′ + q y = e λ x [ P l ( x ) cos ⁡ ω x + P n ( x ) sin ⁡ ω x ] \\ \color{blue}{II型} \\ f(x) = e^{ \lambda x}[P_l(x) \cos \omega x + P_n(x) \sin \omega x] \\ y'' + py' + qy = e^{ \lambda x}[P_l(x) \cos \omega x + P_n(x) \sin \omega x] IIf(x)=eλx[Pl(x)cosωx+Pn(x)sinωx]y+py+qy=eλx[Pl(x)cosωx+Pn(x)sinωx]

解法:
特 解 的 设 法 : m = max ⁡ [ l , n ] y ∗ = x k e λ x [ Q m ( x ) cos ⁡ ω x + R m ( x ) sin ⁡ ω x ] k = { 0 , 当 λ + ω i 不 是 特 征 根 1 , 当 λ + ω i 是 特 征 根 \\特解的设法:m = \max [l, n] \\ \color {red} {y^* = x^k e^{\lambda x}[Q_m(x) \cos \omega x +R_m(x) \sin \omega x]} \\ \color {red} k= \begin{cases} 0, 当 \lambda + \omega i 不是特征根 \\1, 当 \lambda + \omega i 是特征根 \end{cases} m=max[l,n]y=xkeλx[Qm(x)cosωx+Rm(x)sinωx]k={0,λ+ωi1,λ+ωi
实例:
求 微 分 方 程 y ′ ′ + y = x cos ⁡ 2 x 的 通 解 特 征 方 程 : r 2 + 1 = 0 特 征 根 : r = ± i 对 应 齐 次 方 程 的 通 解 Y = C 1 cos ⁡ x + C 2 sin ⁡ x l = 1 , n = 0 , m = max ⁡ [ 0 , 1 ] = 1 λ = 0 , ω = 2 , λ + ω = 2 i 不 是 特 征 根 k = 0 则 可 设 特 解 y ∗ = ( a x + b ) cos ⁡ 2 x + ( c x + d ) sin ⁡ 2 x 不 断 求 导 , 求 到 二 阶 导 , 而 后 代 入 原 方 程 用 待 定 系 数 法 求 出 a 、 b 、 c 、 d \\求微分方程 y'' +y = x \cos 2x 的通解 \\ 特征方程: r^2 + 1 = 0 \\ 特征根: r = \pm i \\对应齐次方程的通解 \\Y = C_1 \cos x + C_2 \sin x \\l=1, n=0, \color {red} {m= \max [0, 1] = 1} \\ \lambda = 0, \omega = 2, \lambda +\omega = 2i不是特征根 \\k=0 \\则可设特解y^* = (ax + b)\cos 2x +(cx + d)\sin 2x \\不断求导,求到二阶导,而后代入原方程 \\用待定系数法求出a、b、c、d y+y=xcos2xr2+1=0r=±iY=C1cosx+C2sinxl=1,n=0,m=max[0,1]=1λ=0,ω=2,λ+ω=2ik=0y=(ax+b)cos2x+(cx+d)sin2xabcd
复数法求解
形 如 y ′ ′ + y = x cos ⁡ 2 x 可 以 补 上 虚 部 , 而 后 待 定 系 数 利 用 欧 拉 公 式 , 将 其 转 变 为 I 型 : e θ i = cos ⁡ θ + i sin ⁡ θ 即 y ′ ′ + y = x cos ⁡ 2 x + x sin ⁡ 2 x i y ′ ′ + y = x e 2 i x \\形如 y'' + y = x \cos 2x \\可以补上虚部,而后待定系数 \\利用欧拉公式,将其转变为I型: \color{red}{e^{\theta i}= \cos \theta + i \sin \theta} \\即y'' + y = x \cos 2x + x \sin 2x i \\y'' + y = xe^{2ix} y+y=xcos2xI:eθi=cosθ+isinθy+y=xcos2x+xsin2xiy+y=xe2ix

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值