题目:给定一个字符串 s
,找到 s
中最长的回文子串。你可以假设 s
的最大长度为 1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。
示例 2:
输入: "cbbd"
输出: "bb"
解决思路:解题的思路很多,我只写一种动态规划方法。
对于字符串str,假设dp[i,j]=1表示str[i...j]是回文子串,那个必定存在dp[i+1,j-1]=1。这样最长回文子串就能分解成一系列子问题,可以利用动态规划求解了。
创建一个矩阵dp[][],其中dp[i][j]表示字符串第i到j是否为回文。当字符串i所在的字符等于字符串j所在的字符,并且它的内部(dp[i+1][j-1])为回文那么dp[i][j]为true。因为这样的规律,我们要保证判断dp[i][j]的时候dp[i+1][j-1]已经判断。所以,我们在计算dp[][] 时,需要从下到上,从左往右。结合代码,dp[2][6]位置,由于s[2]=s[6],且dp[3][5]=1已经计算,所以dp[2][6]=1。代表s[2]到s[6]是回文。
class Solution(object):
def longestPalindrome(self, s):
"""
:type s: str
:rtype: str
"""
n = len(s)
dp = [[0 for i in range(n)] for i in range(n)]
left = 0
right = 0
for i in range(n-2,-1,-1):
dp[i][i] = 1
for j in range(i + 1,n,1):
dp[i][j] = s[i] == s[j] and ( j-i<3 or dp[i+1][j-1])
if(dp[i][j] and right-left<j-i):
left=i
right=j
return s[left:right+1]