LeetCode-5: 最长回文子串(Python版)

本文介绍了一种使用动态规划解决寻找字符串中最长回文子串问题的方法。通过构建dp矩阵来记录字符串各部分是否为回文,从而高效地找出最长回文子串。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

示例 1:

输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。

示例 2:

输入: "cbbd"
输出: "bb"

解决思路:解题的思路很多,我只写一种动态规划方法。

对于字符串str,假设dp[i,j]=1表示str[i...j]是回文子串,那个必定存在dp[i+1,j-1]=1。这样最长回文子串就能分解成一系列子问题,可以利用动态规划求解了。

创建一个矩阵dp[][],其中dp[i][j]表示字符串第i到j是否为回文。当字符串i所在的字符等于字符串j所在的字符,并且它的内部(dp[i+1][j-1])为回文那么dp[i][j]为true。因为这样的规律,我们要保证判断dp[i][j]的时候dp[i+1][j-1]已经判断。所以,我们在计算dp[][] 时,需要从下到上,从左往右。结合代码,dp[2][6]位置,由于s[2]=s[6],且dp[3][5]=1已经计算,所以dp[2][6]=1。代表s[2]到s[6]是回文。

class Solution(object):
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        n = len(s)
        dp = [[0 for i in range(n)] for i in range(n)]
        left = 0
        right = 0
        for i in range(n-2,-1,-1):
            dp[i][i] = 1
            for j in range(i + 1,n,1):
                dp[i][j] = s[i] == s[j] and ( j-i<3 or dp[i+1][j-1])
                if(dp[i][j] and right-left<j-i):
                    left=i
                    right=j
        return s[left:right+1]

 

### LeetCode5 题 '最长回文子串' 的 Python 解法 对于给定字符串 `s`,返回其中的最长回文子串是一个经典算法问题。一种高效的解决方案是利用中心扩展方法来寻找可能的最大长度回文。 #### 中心扩展法解析 该方法基于观察到的一个事实:一个回文串可以由中间向两端不断扩散而得。因此可以从每一个字符位置出发尝试构建尽可能大的回文序列[^1]。 具体来说: - 对于每个字符作为单个字符的中心点; - 或者两个相同相邻字符作为一个整体中心点; - 向两侧延伸直到遇到不匹配的情况为止; 记录下每次找到的有效回文串及其起始索引和结束索引,并更新全局最优解。 下面是具体的 Python 实现代码: ```python def longest_palindrome(s: str) -> str: if not s or len(s) == 0: return "" start, end = 0, 0 for i in range(len(s)): len1 = expand_around_center(s, i, i) len2 = expand_around_center(s, i, i + 1) max_len = max(len1, len2) if max_len > end - start: start = i - (max_len - 1) // 2 end = i + max_len // 2 return s[start:end + 1] def expand_around_center(s: str, left: int, right: int) -> int: L, R = left, right while L >= 0 and R < len(s) and s[L] == s[R]: L -= 1 R += 1 return R - L - 1 ``` 此函数通过遍历整个输入字符串并调用辅助函数 `expand_around_center()` 来计算以当前位置为中心能够形成的最长回文串长度。最终得到的结果即为所求的最大回文子串
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值