大话数据结构学习笔记 - 查找之顺序查找、折半查找、插值查找及斐波那契查找

19 篇文章 0 订阅
16 篇文章 1 订阅

大话数据结构学习笔记 - 查找之顺序查找、折半查找、插值查找及斐波那契查找

查找(Searching): 就是根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录)

概论

概念

查找表(Search Table):由同一类型的数据元素(或记录)构成的集合

关键字(Key):数据元素中某个数据项的值,又称为键值,用来标识一个数据元素

主关键字(Primary Key):若关键字可以唯一的标识一个记录,则称此关键字为主关键字, 主关键字所在的数据项称为主关键码

次关键字(Secondary Key): 可以识别多个数据元素(或记录)的关键字

查找表

静态查找表

静态查找表(Static Search Table): 只做查找操作的查找表

  • 查询某个特定数据元素是否在查找表中
  • 检索某个特定数据元素和各种属性
动态查找表

动态查找表(Dynamic Search Table): 在查找过程中同时插入查找表中不存在的数据元素,或者从查找表中删除已经存在的某个数据元素

  • 查找时插入数据元素
  • 查找时删除数据元素

面向查找操作的数据结构称为查找结构

本文所有代码,示例数组为{0,1,16,24,35,47,59,62,73,88,99}, 区间为[1, 10], 返回下标0则表示查找失败

顺序表查找

顺序查找(Sequential Search) 又叫线性查找,是最基本的查找技术,它的查找过程是:从表中第一个(或最后一个)记录开始,逐个进行记录的关键字和给定值比较,若某个记录的关键字和给定值相等,则查找成功,找到所查的记录,如果知道最后一个(或第一个)记录,其关键字和给定值比较都不等时,则表中没有所查的纪录,查找不成功

复杂度:最好时,查找次数为1次,时间复杂度为 O(1) O ( 1 ) ; 最坏时,查找次数为n + 1次, 时间复杂度为 O(n) O ( n ) , 平均查找次数为 (n+1)/2 ( n + 1 ) / 2 , 故时间复杂度为 O(n) O ( n )

顺序查找算法

/* 无哨兵顺序查找,a为数组,n为要查找的数组个数,key为要查找的关键字 */
int Sequential_Search(int *a, int n, int key)
{
    for(int i = 1; i <= n; i++)  /* 元素值从下标 1 开始 */
    {
        if(a[i] == key)
            return i;
    }
    return 0;
}

顺序表查找优化

通过设置哨兵, 则不需要每次都与n比较,以判断是否越界

/* 有哨兵顺序查找 */
int Sequential_Search2(int *a, int n, int key)
{
    int i = n;  /* 循环从数组尾部开始 */
    a[0] = key;  /* 设置 a[0] 为关键字值,我们称之为 哨兵 */
    while(a[i] != key)
        i--;
    return i;  /* 返回 0 则说明查找失败 */
}

有序表查找

折半查找

折半查找(Binary Search) 技术,又称为 二分查找。它的前提是线性表中的记录必须是关键码有序(通常从小到大有序), 线性表必须采用顺序存储。折半查找的基本思想是:在有序表中,取中间记录作为比较对象,若给定值与中间记录的关键字相等,则查找成功;若给定值小于中间记录的关键字,则在中间记录的左半区继续查找;若给定值大于中间记录的关键字,则在中间记录的右半区继续查找。不断重复上述过程,知道查找成功,或所有查找区域无记录,查找失败为止。

复杂度: 时间复杂度为 O(log(n)) O ( l o g ( n ) )

前提: 有序表顺序存储, 对于静态查找表,一次排序后不再变化,这样的算法比较好。但若经常执行插入或删除操作的表,不建议使用

/* 折半查找 */
int Binary_Search(int *a, int n, int key)
{
    int low = 1, high = n, middle;  // 此处元素区间为 [1, n], 也可以使用 [0, n - 1]
    while(low <= high)
    {
        middle = low + (high - low) / 2;  // 寻找中间位置, 不使用 (middle = low + high) / 2 原因是可能溢出
        if(a[middle] < key)   // 若查找值比中位数大
            low = middle + 1;
        else if(a[middle] > key)  // 若查找值比中位数小
            high = middle - 1;
        else
            return middle;  /* 若相等则说明 middle 即为查找到的位置 */
    }
    return 0;
}

插值查找

对于折半查找的思考是为什么一定要折半,而不是折四分之一或者更多呢?比如在字典查apple单词或zoo单词,肯定不会从中间开始查起,而是有一定目的的往前翻或往后翻。

同样,若在取值范围0~1000之间的100个元素从小到大均匀分布的数组中查找5,自然会考虑从数组下标较小的开始查找。

折半查找中的middle取值公式为 middle=low+high2=low+highlow2 m i d d l e = l o w + h i g h 2 = l o w + h i g h − l o w 2 , 可通过改进该公式优化折半查找算法

middle=low+keya[low]a[high]a[low](highlow) m i d d l e = l o w + k e y − a [ l o w ] a [ h i g h ] − a [ l o w ] ( h i g h − l o w ) , 将参数 12 1 2 改为 keya[low]a[high]a[low] k e y − a [ l o w ] a [ h i g h ] − a [ l o w ] , 可以让middle值更快的靠近关键字所在的位置,也就减少了比较次数

插值查找(Interpolation Search): 是根据要查找的关键字key与查找表中最大最小记录的关键字比较后的查找方法,其核心就在于插值公式 keya[low]a[high]a[low] k e y − a [ l o w ] a [ h i g h ] − a [ l o w ]

复杂度: 也是 O(log(n)) O ( l o g ( n ) ) , 但对于表长较大,而关键字分布有比较均匀的查找表来说,其平均性能要比折半查找好得多

/* 插值查找 */
int Interpolation_Search(int *a, int n, int key)
{
    int low = 1, high = n, middle;
    while(a[low] != a[high] && key >= a[low] &&  key <= a[high])  // 此处判断条件是为了防止 key - a[low] 为负值的情况
    {
        middle = low +  (high - low) * (key - a[low]) / (a[high] - a[low]);
        if(key > a[middle])
            low = middle + 1;
        else if(key < a[middle])
            high = middle - 1;
        else
            return middle;
    }
    if(key == a[low]) return low;  // 如果是2, 2, 2, 2这种全部重复元素,就不会上面的循环,为了防止 key - a[low] 为 0 的情况,则此处处理该情况,返回第一个 2
    return 0;
}

关于插值查找算法,下面的某个博客讲解非常详细,要详细阅读

斐波那契查找

黄金分割或黄金比例是指事物各部分间一定的数学比例关系,即将整体分割成比例为1:0.618的比例被认为最完美。而斐波那契数列两个相邻想的比例会逐渐接近0.618,为了使用该比例,则有了斐波那契查找算法。

斐波那契数列的最重要的性质是从第三个数字起,每个数都等于前两个数之和,即f[n] = f[n-1] + f[n-2], 而f[n-1]f[n-2]又可以继续分解,直到f[1]f[2]为止。

Search_Fibonacci_Search

算法核心

  • key = a[mid]时,查找成功
  • key < a[mid]时,新范围是第low个到第mid - 1个,此时范围个数为F[k - 1] - 1
  • key > a[mid]时,新范围是第mid + 1个到第high个,此时范围个数为F[k - 2] - 1

复杂度: 若要查找的记录始终出现在右侧,时间复杂度为 O(log(n)) O ( l o g ( n ) ) , 但优于折半查找。若始终出现在左侧,则效率低于折半查找。并且折半查找进行的是加法与除法运算 mid=(low+high)/2 m i d = ( l o w + h i g h ) / 2 ; 插值查找进行的是复杂的四则运算 mid=low+(highlow)keya[low]a[high]a[low] m i d = l o w + ( h i g h − l o w ) ∗ k e y − a [ l o w ] a [ h i g h ] − a [ l o w ] , 而斐波那契查找只是最简单的加减法运算 mid=low+F[k1]1 m i d = l o w + F [ k − 1 ] − 1 ,当然这也会影响一些。

/* 斐波那契查找 */
int Fibonacci_Search(int *a, int n, int key)
{
    int low = 1, high = n, k = 0, middle;
    while (n > F[k] - 1)  /* 计算 n 处于斐波那契数列的位置 */
        k++;
    for(int i = n; i < F[k] - 1; i++)  /* 填充数组,使其长度为斐波那契数列的最大值 */
        a[i] = a[n];
    while(low <= high)
    {
        middle = low + F[k - 1] - 1;  /* 计算当前分隔的下标 */
        if(key < a[middle])   /* 若当前查找记录小于当前分隔记录 */
        {
            high = middle - 1;   /* 排除右半边的元素 */
            k = k - 1;   /* F[k - 1] 是左半边的长度 */
        }
        else if(key > a[middle])  /* 若查找记录大于当前分隔记杀 */
        {
            low = middle + 1;   /* 排除左半边的元素 */
            k = k - 2;   /* F[k - 2] 是右半边的长度 */
        }
        else{
            if(middle <= n)  /* 若相等则说明 mid 即为查找到的位置 */
                return middle;
            else
                return n;   /* 若 middle > n 说明是补全数值,返回 n */
        }
    }
    return 0;
}

源码

静态查找-顺序查找、折半查找、插值查找及斐波那契查找

推荐博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值