本地 AI:如何使用 Ollama 和 OpenWebUI 实现无限制的 LLM 访问

对生成式 AI 感兴趣,但对将数据发送到云犹豫不决?也许您已经在使用 ChatGPT、Claude 或 Google LLM,但一直达到每日限制。也许您的公司限制公共 AI 访问,或者您宁愿避免信用卡上的另一笔经常性费用。好消息?您可以使用 Ollama 和 OpenWebUI 的组合在本地运行许多强大的 AI 模型——没有云、没有限制、没有额外费用!

在下面的文章中,我将简要介绍 Ollama 和 Open WebUI 技术,然后引导您完成所需的设置,以便在本地启动和运行 DeepSeek LLM 和其他技术。首先,简要概述 Ollama 和 Open WebUI。

关于 Ollama 和 Open WebUI

Ollama 是一个开源应用程序,允许用户在自己的计算机上运行大型语言模型 (LLM)。LLM 是可以生成和理解类似人类的文本、代码并执行分析任务的 AI 程序。

Open WebUI 是一个开源项目,旨在提供基于 Web 的用户界面,用于与机器学习模型(尤其是 LLM)进行交互。它允许用户通过基于浏览器的界面部署、自定义这些模型并与之交互。OpenWebUI 简化了对文本生成、问答、摘要或其他 AI 驱动的应用程序等任务的访问。

有什么收获呢?

本身没有问题,但您确实需要满足某些硬件要求,其中之一是具有至少 4Gb 专用视频 RAM 的 GPU。在撰写本文时,我和我的团队使用了一台较旧的笔记本电脑,配备 i7-9950 CPU、16 Gb RAM 和具有 4Gb 视频 RAM 的 NVIDIA Quadro T1000。我们的测试系统没有遇到任何问题,但没有尝试任何功能更弱的东西。

通常,系统在视频卡和视频内存方面越强大,LLM 响应就越快。更强大的系统还允许您运行更大的模型,从而提供更好、更准确的响应。

安装

Open WebUI 安装可以通过多种方式完成,包括 Docker。但是,我们选择使用 Ollama、Python 和 Open WebUI 的更传统的安装。让我们开始吧。

安装 Ollama (1/3)

第一步是使用以下 URL 下载并安装 Ollama:Download Ollama on macOS

选择合适的选项,macOS、Linux 或 Windows(我们的选择)。单击“下载适用于 Windows”按钮,然后在您的下载文件夹中找到安装程序。

您可以双击 OllamaSetup.exe 或通过 Windows 命令提示符运行安装程序。对于我们的安装,我们使用了所有默认选项。请注意,Ollama 在端口 11434 上运行。

Ollama 有一个命令行界面。虽然你可以通过这种方式直接与它交互,但没有 Open WebUI,我们只使用它来安装 LLM 模型。以下命令将列出已经安装的模型。对于新安装,将没有。

ollama list

接下来,我们可以安装一个模型。我们将提取(下载)针对有限的计算能力定制的最新 DeepSeek 模型。

ollama pull deepseek-r1:1.5b

这就是我们需要对 Ollama 做的全部工作,尽管你可以尝试命令行界面。只需键入单词 ollama 即可查看选项。

安装 Python(第 2 个,共 3 个)

下一步是安装 Python。建议使用 Python 3.11。如果您尚未安装它,可以在此处获取它并运行安装可执行文件。

https://www.python.org/downloads/release/python-3119/

我们使用了带有所有默认选项的 Windows Installer(64 位)。

https://www.python.org/ftp/python/3.11.9/python-3.11.9-amd64.exe

接下来,最好将虚拟环境与 Python 一起使用,这样您的许多项目就不会相互干扰。我们建议使用以下命令来创建和激活名为 venv 的虚拟环境。请注意,您应该首先创建一个包含所需环境文件的目录。我们将目录命名为 open-webui,但您可以使用任何您喜欢的名称。

cd %USERPROFILE%
mkdir open-webui
cd open-webui
python -m venv venv
venv\Scripts\Activate

您的命令提示符应如下所示。请注意 (venv) 指示虚拟环境处于活动状态。

安装 Open WebUI(第 3 个,共 3 个)

最后一步是安装 Open WebUI。在安装 Python 的同一 Windows 命令提示符中,使用以下命令安装 Open WebUI。

pip install open-webui

您可以在以下 URL 中获取有关 Open WebUI 的完整详细信息,包括替代安装方法。

https://github.com/open-webui/open-webui

运行 Open WebUI

安装后,您可以通过在相同的 Windows 命令提示符下执行以下命令来启动 Open WebUI

open-webui serve

经过一段时间的配置后,这将在端口 8080 上启动 Open WebUI 服务器。在您最喜欢的 Web 浏览器中,输入以下 UI,您就可以开始聊天会话了。

http://localhost:8080

(请注意,默认情况下它是 http,而不是 https。

您应该看到如下内容:

如果您安装了多个模型,则可能必须首先选择模型。此外,您还可以设置默认模型。

如果一切顺利,您就可以启动并运行,并且可以免费与当地的 LLM 交互。如果是这样,感谢您花时间阅读此博客!如果没有,这里有一些故障排除提示。

故障 排除

端口使用情况

默认情况下,Ollama 使用端口 11434,而 Open WebUI 使用 8080。特别是端口 8080,许多应用程序都使用端口,包括 Apache Tomcat、Jenkins 和代理服务器。您可以轻松更改启动命令中使用的端口。 例如:

open-webui serve --port 8081

安装其他模型

安装其他模型非常简单。首先转到以下 Ollama URL 以查看所有可用模型:library

单击模型名称链接以了解参数并获取要下载的模型的确切名称。这是 DeepSeek 的示例。请注意,您需要一个提炼模型,它是基础模型的变体,计算密集度较低。最后,您可能会看到命令 ollama run。这将拉取和运行模型。对于 Open WebUI,您应该始终使用 ollama pull,然后它将在 Open WebUI 中自动运行。

由于我们已经安装了 DeekSeek,下面是另一个示例,我们从 Windows 命令提示符中提取 Llama 3.2。

ollama pull llama3.2:1b

要让这个模型显示在 Open WebUI 中,只需刷新你的网页,它就会显示为一个新选项。

Python 的冲突版本

如果您已经安装了 Python,则可能会担心安装 Python 3.11 会导致版本冲突。检查您是否已经安装了 Python 启动器 py。如果没有,您可以将其作为 Python 3.11 的一部分进行安装。使用启动器,您可以按如下方式创建虚拟环境:

py -3.11 -m venv venv

每当虚拟环境被激活时,它都会使用 Python 的 3.11。

最后的思考

通过利用 Ollama 和 OpenWebUI,您可以释放生成式 AI 的强大功能,同时保持对数据的完全控制并避免基于云的限制和成本。无论您是寻求更多灵活性的个人,还是寻求绕过限制性政策的企业,在本地设置 AI 模型都提供了一种无缝、经济高效的替代方案。使用正确的工具和设置,您可以毫不妥协地享受尖端 AI 的好处。

### 集成OllamaOpenWebUI的方法 为了实现 OllamaOpenWebUI 的集成,需先确认已安装好这两个组件。对于希望扩展大型语言模型 (LLM) 功能至图像生成的用户来说,此集成尤为有用。 #### 安装准备 确保 Automatic1111 已经被正确设置并运行良好[^1]。这一步骤至关重要,因为后续操作依赖于该平台作为基础架构的一部分来支持整个工作流程。 #### 下载并配置OpenWebUI 前往官方 GitHub 页面获取最新版本的 OpenWebUI 并按照给定说明完成安装过程[^2]。通常情况下,这意味着克隆仓库到本地计算机上,并执行必要的构建命令以初始化项目环境。 ```bash git clone https://github.com/open-webui/open-webui.git cd open-webui npm install npm run build ``` #### 连接Ollama服务端口 一旦上述准备工作就绪,则需要调整 OpenWebUI 设置以便能够连接到 Ollama 提供的服务接口。具体做法是在 `config.json` 文件内指定 API 地址以及相应参数: ```json { "apiUrl": "http://localhost:8080", ... } ``` 这里的 URL 应指向实际部署有 Ollama 后端程序的位置;如果在同一台机器上,默认监听端口号可能是 8080 或其他自定义值,请根据实际情况修改。 #### 实现功能交互 最后,在前端界面中加入调用逻辑,使得当用户触发特定事件时(比如点击按钮),可以通过 AJAX 请求向后端发送指令从而启动基于 LLM 的图片创作任务。下面是一个简单的 jQuery 示例用于发起 POST 请求: ```javascript $.ajax({ type: 'POST', url: '/generate-image', // 对应服务器路由处理函数 data: JSON.stringify({prompt:"a beautiful sunset"}), contentType: "application/json; charset=utf-8", dataType: "json" }); ``` 以上就是关于如何将 OllamaOpenWebUI 结合使用的简要介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值