对生成式 AI 感兴趣,但对将数据发送到云犹豫不决?也许您已经在使用 ChatGPT、Claude 或 Google LLM,但一直达到每日限制。也许您的公司限制公共 AI 访问,或者您宁愿避免信用卡上的另一笔经常性费用。好消息?您可以使用 Ollama 和 OpenWebUI 的组合在本地运行许多强大的 AI 模型——没有云、没有限制、没有额外费用!
在下面的文章中,我将简要介绍 Ollama 和 Open WebUI 技术,然后引导您完成所需的设置,以便在本地启动和运行 DeepSeek LLM 和其他技术。首先,简要概述 Ollama 和 Open WebUI。
关于 Ollama 和 Open WebUI
Ollama 是一个开源应用程序,允许用户在自己的计算机上运行大型语言模型 (LLM)。LLM 是可以生成和理解类似人类的文本、代码并执行分析任务的 AI 程序。
Open WebUI 是一个开源项目,旨在提供基于 Web 的用户界面,用于与机器学习模型(尤其是 LLM)进行交互。它允许用户通过基于浏览器的界面部署、自定义这些模型并与之交互。OpenWebUI 简化了对文本生成、问答、摘要或其他 AI 驱动的应用程序等任务的访问。
有什么收获呢?
本身没有问题,但您确实需要满足某些硬件要求,其中之一是具有至少 4Gb 专用视频 RAM 的 GPU。在撰写本文时,我和我的团队使用了一台较旧的笔记本电脑,配备 i7-9950 CPU、16 Gb RAM 和具有 4Gb 视频 RAM 的 NVIDIA Quadro T1000。我们的测试系统没有遇到任何问题,但没有尝试任何功能更弱的东西。
通常,系统在视频卡和视频内存方面越强大,LLM 响应就越快。更强大的系统还允许您运行更大的模型,从而提供更好、更准确的响应。
安装
Open WebUI 安装可以通过多种方式完成,包括 Docker。但是,我们选择使用 Ollama、Python 和 Open WebUI 的更传统的安装。让我们开始吧。
安装 Ollama (1/3)
第一步是使用以下 URL 下载并安装 Ollama:Download Ollama on macOS
选择合适的选项,macOS、Linux 或 Windows(我们的选择)。单击“下载适用于 Windows”按钮,然后在您的下载文件夹中找到安装程序。
您可以双击 OllamaSetup.exe 或通过 Windows 命令提示符运行安装程序。对于我们的安装,我们使用了所有默认选项。请注意,Ollama 在端口 11434 上运行。
Ollama 有一个命令行界面。虽然你可以通过这种方式直接与它交互,但没有 Open WebUI,我们只使用它来安装 LLM 模型。以下命令将列出已经安装的模型。对于新安装,将没有。
ollama list
接下来,我们可以安装一个模型。我们将提取(下载)针对有限的计算能力定制的最新 DeepSeek 模型。
ollama pull deepseek-r1:1.5b
这就是我们需要对 Ollama 做的全部工作,尽管你可以尝试命令行界面。只需键入单词 ollama 即可查看选项。
安装 Python(第 2 个,共 3 个)
下一步是安装 Python。建议使用 Python 3.11。如果您尚未安装它,可以在此处获取它并运行安装可执行文件。
https://www.python.org/downloads/release/python-3119/
我们使用了带有所有默认选项的 Windows Installer(64 位)。
https://www.python.org/ftp/python/3.11.9/python-3.11.9-amd64.exe
接下来,最好将虚拟环境与 Python 一起使用,这样您的许多项目就不会相互干扰。我们建议使用以下命令来创建和激活名为 venv 的虚拟环境。请注意,您应该首先创建一个包含所需环境文件的目录。我们将目录命名为 open-webui,但您可以使用任何您喜欢的名称。
cd %USERPROFILE%
mkdir open-webui
cd open-webui
python -m venv venv
venv\Scripts\Activate
您的命令提示符应如下所示。请注意 (venv) 指示虚拟环境处于活动状态。
安装 Open WebUI(第 3 个,共 3 个)
最后一步是安装 Open WebUI。在安装 Python 的同一 Windows 命令提示符中,使用以下命令安装 Open WebUI。
pip install open-webui
您可以在以下 URL 中获取有关 Open WebUI 的完整详细信息,包括替代安装方法。
https://github.com/open-webui/open-webui
运行 Open WebUI
安装后,您可以通过在相同的 Windows 命令提示符下执行以下命令来启动 Open WebUI
open-webui serve
经过一段时间的配置后,这将在端口 8080 上启动 Open WebUI 服务器。在您最喜欢的 Web 浏览器中,输入以下 UI,您就可以开始聊天会话了。
http://localhost:8080
(请注意,默认情况下它是 http,而不是 https。
您应该看到如下内容:
如果您安装了多个模型,则可能必须首先选择模型。此外,您还可以设置默认模型。
如果一切顺利,您就可以启动并运行,并且可以免费与当地的 LLM 交互。如果是这样,感谢您花时间阅读此博客!如果没有,这里有一些故障排除提示。
故障 排除
端口使用情况
默认情况下,Ollama 使用端口 11434,而 Open WebUI 使用 8080。特别是端口 8080,许多应用程序都使用端口,包括 Apache Tomcat、Jenkins 和代理服务器。您可以轻松更改启动命令中使用的端口。 例如:
open-webui serve --port 8081
安装其他模型
安装其他模型非常简单。首先转到以下 Ollama URL 以查看所有可用模型:library
单击模型名称链接以了解参数并获取要下载的模型的确切名称。这是 DeepSeek 的示例。请注意,您需要一个提炼模型,它是基础模型的变体,计算密集度较低。最后,您可能会看到命令 ollama run。这将拉取和运行模型。对于 Open WebUI,您应该始终使用 ollama pull,然后它将在 Open WebUI 中自动运行。
由于我们已经安装了 DeekSeek,下面是另一个示例,我们从 Windows 命令提示符中提取 Llama 3.2。
ollama pull llama3.2:1b
要让这个模型显示在 Open WebUI 中,只需刷新你的网页,它就会显示为一个新选项。
Python 的冲突版本
如果您已经安装了 Python,则可能会担心安装 Python 3.11 会导致版本冲突。检查您是否已经安装了 Python 启动器 py。如果没有,您可以将其作为 Python 3.11 的一部分进行安装。使用启动器,您可以按如下方式创建虚拟环境:
py -3.11 -m venv venv
每当虚拟环境被激活时,它都会使用 Python 的 3.11。
最后的思考
通过利用 Ollama 和 OpenWebUI,您可以释放生成式 AI 的强大功能,同时保持对数据的完全控制并避免基于云的限制和成本。无论您是寻求更多灵活性的个人,还是寻求绕过限制性政策的企业,在本地设置 AI 模型都提供了一种无缝、经济高效的替代方案。使用正确的工具和设置,您可以毫不妥协地享受尖端 AI 的好处。