关于sinX与y的大小比较取值范围计算
@(概率论)
在求分布函数的时候,常常有已知
X
的分布函数求
比如: X∈[0,π]
则 sinX≤y 的范围是什么?
注意,在概率论中常常用大写字母表示变量,小写字母表示取值。
有两个角度的思考,根据 sinX 的图像推导:
可知两个交点是: X=arcsiny,π−arcsiny
那么再根据图像可知取值范围是: X∈[0,arcsiny]∪[π−arcsiny,π]
这种思路很清晰明确且不易出错。
但当熟悉反函数的图像时: X=arcsiny
因为反函数是个函数,也是一一映射,所以不能反映 [π2,π] 上的取值,因此,不可以直接化为 X≤arcsiny .
简单说就是,sinx在R上并没有反函数,需要限定取值范围才可以。这里可以分成 x∈[0,π2]∪[π2,π] 两部分讨论,但是没有直接在sinX的图像上研究更容易把握。