奇延拓和偶延拓
@(微积分)
一般说来,给定[0,l]区间函数表达式,告知展开为余弦级数,则意味着要在[-l,0)上进行偶延拓。
如果展开为正弦级数,则意味着在[-l,0)上进行奇延拓。
再结合狄利克雷收敛定理可以很快求得在一点处的收敛值。
比如:
f(x)=x+1,(0≤x≤1) ,则它以2为周期的余弦级数在x = 0处收敛于 1⎯⎯ .
分析:这里是展开为余弦级数,因此是偶延拓,则x = 0是f(x)的连续点,因此,收敛于f(0) = 1.
如果是展开为正弦级数呢?则需要奇延拓。
则此时x=0就是间断点了。所以,根据狄利克雷定理,知道,收敛于 f(0−)+f(0+)2=0 .