信息与通信工程保研专业课复习——信号与系统4

本文详细介绍了傅里叶变换在信号分析中的应用,包括正交函数的概念、周期信号的傅里叶级数、非周期信号的傅里叶变换以及线性时不变系统(LTI)的频域分析。重点讨论了周期信号的谱线特性、无失真传输条件和取样定理,阐述了如何通过频域分析实现信号的滤波和传输。此外,还探讨了物理可实现系统条件和取样定理对于连续信号与离散信号转换的重要性。
摘要由CSDN通过智能技术生成

第四章 傅里叶变换和系统的频域分析

一、正交函数概念及相关知识

信号正交:若定义在(t1,t2)区间内的两个函数f(t)、g(t)满足f(t)g*(t)在区间(t1,t2)上的积分等于零(也即两函数的内积为0),则称f(t)、g(t)在区间(t1,t2)内正交。

正交函数集:

完备正交函数集:

任意一个函数总可以分解为无穷多项正交函数之和

帕斯瓦尔方程:表明在区间(t1,t2)内,f(t)所含的能量=其在完备正交函数集中分解的各正交分量能量的总和。

 

二、周期信号的傅里叶级数

分为三角形式和指数形式

三角形式下注意对称性与谐波特性:(1)f(t)为偶函数,则bn=0;(2)f(t)为奇函数,则an=0;(3)f(t)为奇谐函数,即f(t)=-f(t+T/2),则偶次谐波分量(包括a0这一直流项)为0;(4)f(t)为偶谐函数,即f(t)=f(t+T/2),则奇次谐波分量为0。

 

信号频谱的概念:广义上说,指的是信号的某种特征量随信号频率变化的关系。周期信号的频谱是指周期信号中各次谐波分量的幅值与相位随频率的变化关系。

对于双边频谱,负频率只有数学意义而无物理意义,引入其的目的?:f(t)是实函数,展开为傅里叶级数指数形式后分解成为了虚指数,因此必须要有共轭对e^(jnΩt)及e^(-jnΩt)才能保证f(t)的实函数性质不变。

 

周期信号频谱的特点:1.具有离散性,谱线位置是基频Ω的整数倍;2.一般具有收敛性,总趋势减小

如果周期T无限延长(这时就成为了非周期信号),则谱线的间隔(Ω=2Π/T)将趋近于零,周期信号的离散频谱就过渡到了非周期信号的连续频谱。各频率分量的幅度也都趋近于无穷小。

在满足一定失真条件下,信号可以用某段频率范围内的信号来表示,此频率范围称为频带宽度。对于低通型信号,我们一般把第一个零点作为其频带宽度。

 

三、非周期信号的频谱——傅里叶变换

非周期信号可视为是周期为无穷大的周期信号,其傅里叶系数Fn及谱线间隔Ω=2Π/T均趋近于零,虽然各频谱幅度无限小,但其相对大小仍有区别,由此引入一个新的物理量F(jw)=limFnT,称为频谱密度函数,或者f(t)的傅里叶变换,以描述非周期信号的频域特性。

尺度变换特性:f(at)\leftrightarrow \frac{1}{\left | a \right |}F(j\frac{w}{a})    由此可知时域展宽时频域压缩;时域压缩时频域展宽;时域反转,频域也反转。

卷积定理:总结来讲就是时域卷积,频域乘积;时域乘积,频域卷积再除以2Π。

能量谱与功率谱:如果信号能量有限,则称为能量信号;如果信号功率有限,则称为功率信号。能量信号功率为0;功率信号能量无穷大。该式为帕斯瓦尔方程(能量方程)。

 

四、周期信号的傅里叶变换

将周期信号的指数形傅里叶级数进行傅里叶变换

可知:(1)周期信号f_{_{T}}(t)的傅氏变换由冲激序列组成,且冲激函数仅存在于谐波频率处。

(2)谱线的幅度不是有限值,而是无穷大。(因为是冲激函数)

傅里叶变换与傅里叶系数的关系

 

五、LTI系统的频域分析

频率响应:一个传输系统可由输入f(t)、系统函数h(t)以及输出y(t)构成。在LTI的条件下,三者之间的关系为f(t)*h(t)=y(t),经傅里叶变换可得F(jw)\times H(jw)=Y(jw)。其中的H(jw)就称为频率响应,它可定义为系统零状态响应的傅里叶变换与激励的傅里叶变换之比,可拆分为幅频特性和相频特性两部分。

无失真滤波与传输:传输要求信号尽量不失真,而滤波则要求滤去或削弱不需要的成分,必然伴随着失真。

1.无失真传输

(1)定义:系统的输出信号与激励相比,只有幅度和出现时间的先后不同,而没有波形上的变化,即y(t)=Kf(t-t_{_{d}})

(2)幅度失真:各个频率分量的幅度产生不同程度的衰减; 相位失真:各频率分量产生的相移不与频率成正比,使相应的各频率分量在时间轴上的相对位置产生变化。

线性系统的失真只会是信号的幅度和相位产生变化,不产生新的频率分量;非线性系统的非线性失真则会产生新的频率分量。

(3)无失真传输条件:(a) h(t)=K\delta (t-t_{_{d}})  或(b) H(jw)=Ke^{-jwt_{_{d}}}, 也即幅度为常数K,相位为-wt_{_{d}}.(只有相位与频率成正比,才能保证各次谐波有相同的延迟时间,在延迟后各次谐波叠加方能不失真)

2.理想低通滤波器

频谱为一个关于纵轴对称的门函数,宽度为2w_{_{c}}w_{c}为截止频率。将其进行逆傅里叶变换,得到Sa函数,其在t<0的部分取值不恒为0,因此为一个不可实现的非因果系统。

3.物理可实现的条件

(1)时域特性:需满足h(t)=0,t<0. 即相应不在激励前出现;

(2)频域特性:满足佩里-维纳准则

 

六、取样定理

(1)取样定理论述了在一定条件下,一个连续信号可以完全用离散样本值表示,这些样本只包含了该连续信号的全部信息。取样定理在连续信号与离散信号之间架起了一座桥梁。为其相互转换提供了理论依据。

(2)时域取样定理:一个频谱在(-w_{m},w_{m})以外为0的带限信号f(t),可唯一的由其在均匀间隔T_{s}[T_{s}\leqslant 1/2f_{m}]上的样点值f(nT_{s})确定。

注:①f(t)必须是带限信号;②取样频率不能太低,必须满足f_{s}> 2f_{m},或者说,取样间隔不能太大;否则会发生混叠。

通常将最低允许的取样频率fs=2fm称为奈奎斯特频率,把最大允许的取样间隔Ts=1/(2fm)称为奈奎斯特间隔。

(3)频域采样定理:一个在时域区间(-t_{m},t_{m})以外为0的时限信号f(t),可唯一的由其在均匀频率间隔f_{s}[f_{s}\leqslant 1/2t_{m}]上的样点值f(jnw_{s})确定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值