题意:读入一组单词,判定是否可以经过重组使得每一个单词第一个字母跟前一个单词最后一个字母相同。若可以达到要求输出"Ordering is possible.",否则输出"The door cannot be opened."
分析: 其实这题就是判断有向图的欧拉通路是否存在,每一个单词可以看成一条边,一条从首字母到末字母的边,我们只需统计顶点的出度和入度,然后判断图的连通性就可以得到结果。
有向图的欧拉通路判定:图为连通图,除两个顶点外,其余顶点的出入度都相等,而这两个顶点的一个顶点出入度之差为1,另一个顶点的出入度之差为-1。
有向图的欧拉回路判定:图为连通图,所有顶点的出入度相等。
代码:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 26;
int n;
char word[1500];
bool vis[maxn];
int in[maxn]; //入度
int out[maxn];//出度
int p[maxn];
void UFset(){
for(int i = 0; i < maxn; i++)
p[i] = -1;
}
int Find(int x){
return p[x] >= 0 ? p[x] = Find(p[x]) : x;
}
void Union(int r1, int r2){
r1 = Find(r1);
r2 = Find(r2);
int t = p[r1] + p[r2];
if(p[r1] < p[r2]){
p[r2] = r1;
p[r1] = t;
}
else{
p[r1] = r2;
p[r2] = t;
}
}
bool Connect(){
int first = -1;
for(int i = 0; i < maxn; i++){
if(!vis[i]) continue;
if(first == -1) first = i;
if(Find(first) != Find(i)) return false;
}
return true;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
UFset();
for(int i = 0; i < maxn; i++){
out[i] = 0; in[i] = 0; vis[i] = false;
}
for(int i = 0; i < n; i++){
scanf("%s",word);
int u = word[0] -'a';
int v = word[strlen(word)-1] - 'a';
out[u]++; in[v]++;
vis[u] = vis[v] = true;
if(Find(u) != Find(v))
Union(u,v);
}
bool f = true;
int s = 0;//出入度之差为1
int t = 0;//出入度之差为-1
for(int i = 0; i < maxn; i++){
if(!vis[i]) continue;//当前字母没出现
if(out[i] == in[i]) continue;//出入度相等
if(abs(out[i] - in[i]) >= 2){//出入度之差大于1
f = false; break;
}
if(out[i] - in[i] == 1){
s++;
if(s > 1){
f = false; break;
}
}
if(out[i] - in[i] == -1){
t++;
if(t > 1){
f = false; break;
}
}
}//end of for 0 to maxn
if(s != t) f = false;
if(!Connect()) f = false;
puts(f?"Ordering is possible.":"The door cannot be opened.");
}//end of while(t--)
return 0;
}