leetcode 218. The Skyline Problem

A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).

Buildings Skyline Contour

The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.

For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .

The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.

For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].

Notes:

  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]

题目 给定一组建筑[left,right,height]信息。输出skyline。

容易想到使用堆排序处理。问题本身并不复杂。但是需要理清逻辑和细节部分。Python实现,感觉还有可以优化的空间,有兴趣的可以试试,代码如下:




class Solution(object):
    def getSkyline(self, buildings):
        """
        :type buildings: List[List[int]]
        :rtype: List[List[int]]
        """
        if not buildings:
            return []
        ret = []
        heap = []
        buildings.append([sys.maxsize, sys.maxsize,0]) # 尾部插入一个结束节点。可以方便清空栈
        for left,right,height in buildings:
            while True:
                if not heap: # 空栈入栈
                    ret.append([left,height])
                    heapq.heappush(heap,[-height,right]) # 高的排前面,结束快的排前面。下同
                    break
                maxHeight,maxRight = -heap[0][0],heap[0][1]
                if left < maxRight: # 还是连续的,入栈即可
                    if height > maxHeight: # 高度出来了可能是一个边界点
                        ret.append([left,height])
                    heapq.heappush(heap,[-height,right])
                    break
                heapq.heappop(heap)
                while heap and heap[0][1] <= maxRight: # 出栈所有被当前建筑遮挡住的部分
                    heapq.heappop(heap)
                if not heap: # 空栈了
                    if left != maxRight:  # 新建筑的左侧在最够一个节点右边,添加一个落地节点
                        ret.append([maxRight,0])
                    elif height == maxHeight: # 刚好衔接在一起了,入栈,不产生skyline
                        heapq.heappush(heap,[-height,right])
                        break
                    ret.append([left,height])
                    heapq.heappush(heap,[-height,right])
                    break
                else:
                    #继续出栈,直到栈顶的块和当前块连在一起或者空栈
                    ret.append([maxRight,-heap[0][0]])
        # 处理堆中剩余的部分
        # while heap:
        #     _,maxRight = heapq.heappop(heap)
        #     while heap and heap[0][1] <= maxRight:
        #         heapq.heappop(heap)
        #     if not heap:
        #         ret.append([maxRight,0])
        #     else:
        #         ret.append([maxRight,-heap[0][0]])
        newRet = []
        #合并skyline ,消除竖线和横线
        for left, height in ret:
            if len(newRet) == 0:
                newRet.append([left, height])
            else:
                if newRet[-1][0] == left:
                    newRet[-1][1] = max(newRet[-1][1], height)
                elif newRet[-1][1] != height:
                    newRet.append([left, height])
        return newRet

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值