Given a binary tree root
, the task is to return the maximum sum of all keys of any sub-tree which is also a Binary Search Tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [1,4,3,2,4,2,5,null,null,null,null,null,null,4,6] Output: 20 Explanation: Maximum sum in a valid Binary search tree is obtained in root node with key equal to 3.
Example 2:
Input: root = [4,3,null,1,2] Output: 2 Explanation: Maximum sum in a valid Binary search tree is obtained in a single root node with key equal to 2.
Example 3:
Input: root = [-4,-2,-5] Output: 0 Explanation: All values are negatives. Return an empty BST.
Example 4:
Input: root = [2,1,3] Output: 6
Example 5:
Input: root = [5,4,8,3,null,6,3] Output: 7
Constraints:
- Each tree has at most
40000
nodes.. - Each node's value is between
[-4 * 10^4 , 4 * 10^4]
.
题目 求树中 "满足查询树的子树的节点值的和" 的最大值。
遍历树即可。代码如下:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def maxSumBST(self, root):
"""
:type root: TreeNode
:rtype: int
"""
result = [0]
def LRD(root,result): #return isBST,sumValue,leftValue,rightValue
if root is None:
return True,0,0,0
isBST,sumValue,leftValue,rightValue = True,root.val,root.val,root.val
leftIsBST,leftSumValue,leftLeftValue,leftRightValue = LRD(root.left,result)
rightIsBST,rightSumValue,rightLeftValue,rightRightValue = LRD(root.right,result)
if root.left :
if(not leftIsBST or leftRightValue >= root.val): #无效的树,下同
return False,0,0,0
else:
leftValue = leftLeftValue
if root.right:
if (not rightIsBST or rightLeftValue <= root.val):
return False,0,0,0
else:
rightValue = rightRightValue
sumValue += leftSumValue + rightSumValue
result[0] = max(result[0],sumValue)
return True,sumValue,leftValue,rightValue
LRD(root,result)
return result[0]