%% 该代码为基于BP网络的语言识别
%% 清空环境变量
clc
clear
%% 训练数据预测数据提取及归一化
pd=2;
%下载四类语音信号
input=[-2:0.1:2];
output=1+sin(pi*pd*input/4);
k=rand(1,10)*4-2;
[m,n]=sort(k);
%随机提取1500个样本为训练样本,500个样本为预测样本
input_train=input;
output_train=output;
input_test=m;
output_test=(1+sin(pi*pd*m/4));
%输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% 网络结构初始化
innum=1;
midnum=6;
outnum=1;
%权值初始化
w1=rands(midnum,innum);
b1=rands(midnum,1);
w2=rands(midnum,outnum);
b2=rands(outnum,1);
w2_1=w2;w2_2=w2_1;
w1_1=w1;w1_2=w1_1;
b1_1=b1;b1_2=b
%% 清空环境变量
clc
clear
%% 训练数据预测数据提取及归一化
pd=2;
%下载四类语音信号
input=[-2:0.1:2];
output=1+sin(pi*pd*input/4);
k=rand(1,10)*4-2;
[m,n]=sort(k);
%随机提取1500个样本为训练样本,500个样本为预测样本
input_train=input;
output_train=output;
input_test=m;
output_test=(1+sin(pi*pd*m/4));
%输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% 网络结构初始化
innum=1;
midnum=6;
outnum=1;
%权值初始化
w1=rands(midnum,innum);
b1=rands(midnum,1);
w2=rands(midnum,outnum);
b2=rands(outnum,1);
w2_1=w2;w2_2=w2_1;
w1_1=w1;w1_2=w1_1;
b1_1=b1;b1_2=b