BP神经网络函数拟合

本文探讨了如何使用BP神经网络进行复杂函数的拟合,详细阐述了网络结构、训练过程以及拟合效果。通过对实际数据的处理,展示了BP神经网络在解决非线性问题上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

%% 该代码为基于BP网络的语言识别


%% 清空环境变量
clc
clear


%% 训练数据预测数据提取及归一化
pd=2;
%下载四类语音信号
input=[-2:0.1:2];
output=1+sin(pi*pd*input/4);
k=rand(1,10)*4-2;
[m,n]=sort(k);


%随机提取1500个样本为训练样本,500个样本为预测样本
input_train=input;
output_train=output;
input_test=m;
output_test=(1+sin(pi*pd*m/4));


%输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% 网络结构初始化
innum=1;
midnum=6;
outnum=1;


%权值初始化
w1=rands(midnum,innum);
b1=rands(midnum,1);
w2=rands(midnum,outnum);
b2=rands(outnum,1);


w2_1=w2;w2_2=w2_1;
w1_1=w1;w1_2=w1_1;
b1_1=b1;b1_2=b
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值