Codeforces Round #236 (Div. 2) [ C题+D题+E题]

C

题:让你构造一个无向图 , 满足这样的条件:

  • the graph contains exactly 2n + p edges;
  • the graph doesn't contain self-loops and multiple edges;
  • for any integer k (1 ≤ k ≤ n), any subgraph consisting ofk vertices contains at most 2k + p edges.

分析: 整个图有2n+p条边,每个子图边数<=2k+p ,  只要让边分布均匀, 避免局部边太密集即可。

一种方案:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
bool used[50][50] ;

int main()
{
    int T ;
    cin>>T;
    while(T--)
    {
        memset(used ,0 ,sizeof(used)) ;
        int n , p ;
        cin>>n>>p ;
        p+=n ;
        for(int i=1; i<n ;i++){
            cout<<i<<" "<<i+1<<endl;
            used[i][i+1] = used[i+1][i] = true ;
        }
        used[1][n] = used[n][1]=true ;
        cout<<n<<" 1"<<endl ;

        int now = 0 , len = 2 ;
        int u ,v ;
        while(p--){
            u = now , v = (u+len) % n ;
            u++ , v++;
            bool flag = false ;
            if(used[u][v]){
                now=0 ; len++ ;
                u = now , v = (u+len) % n ;
                u++ , v++;
                cout<<u<<" "<<v<<endl ;
                flag = true ;
            }
            used[u][v] = used[v][u] = true ;
            if(!flag) cout<<u<<" "<<v<<endl ;
            now = (now+1)%n;
        }
    }
    return 0;
}


D题

不可不说这是个好题。
题意: 将素数分为bad prime 和 good prime.

定义权值 f函数为:

  • f(1) = 0;
  • Let's assume that p is the minimum prime divisor ofs. If p is a good prime, then, otherwise.
允许对数组a[]进行这样的操作:

  • Choose some number r (1 ≤ r ≤ n) and calculate the valueg = GCD(a[1], a[2], ..., a[r]).
  • Apply the assignments: ,,..., .
问通过一些操作,权值之和 最大能达到多少?

分析: 设good prime为 P1 , P2 , P3 ....      ,  bad prime  为 Q1 , Q2 , Q3 , ......

将X分解为:  X = ( P1^a1  + P2^a2 + ..... + Pn^an)       +      (Q1^b1  + Q2^b2 + ....  Qm^bm)

则  f(X)  =  (a1+a2+...an)   -   (b1 + b2 + b3 ... bm)

易知:   f(a*b)  =  f(a)   +  f(b)

若f(b)   <  0    , 则有f(a*b) = f(a) + f(b)  < f(a)

进一步有下面的结论:  (记g[k]  =  gcd(a[1] , a[2] , a[3] , .... a[k] .)

若g[k]  < 0 , 则  f(a[1])  +  f(a[2] + .... +f(a[k])     <      f(a[1]/g[k])   +  f(a[2]/g[k])  + .....+ f(a[k]/g[k])

到这里题目已经很明显了 , 这就是贪心策略!


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <cmath>
using namespace std;
const int maxn = 5050 ;
typedef long long LL;
const int num = 1e5 ;

int prime[num/5] , pri_cnt ;
bool flag[num+10] ;
set<int>bad ;
int a[maxn] , g[maxn] ;
int n , m ;

int gcd(int a,int b){ return b==0 ? a : gcd(b , a%b) ; }

int f(int x)
{
    if(x == 1) return 0 ;
    int ret = 0;
    for(int i=0 ; i<pri_cnt && prime[i]*prime[i]<=x ; i++) if(x % prime[i] == 0)
    {
        if(bad.count(prime[i]))
        {
            while(x % prime[i] == 0)  ret-- , x /= prime[i] ;
        }
        else
        {
            while(x % prime[i] == 0)  ret++ , x /= prime[i] ;
        }
    }
    if(x > 1)
    {
        if(bad.count(x)) ret -- ;
        else ret++ ;
    }
    return ret ;
}

int main()
{
    //freopen("in.txt" ,"r" ,stdin) ;
    for(int i=2; i*i<=num ;i++) if(!flag[i]){
        for(LL j = i*i ;j<=num ;j+=i) flag[j] = true ;
    }
    for(int i=2 ;i<=num ;i++)
        if(!flag[i]) prime[pri_cnt++] = i ;

    scanf("%d%d" , &n ,&m);
    for(int i=1 ;i<=n ;i++)
    {
        scanf("%d" ,&a[i]) ;
        g[i] = gcd(g[i-1] , a[i]) ;
    }
    for(int i=1 ;i<=m ;i++)
    {
        int x ;
        scanf("%d" ,&x);
        bad.insert(x) ;
    }

    int ans = 0 , s = 1;
    for(int i=n ;i>=1; i--)
    {
        g[i] /= s;
        if(f(g[i]) < 0) s*=g[i] ;
        a[i] /= s ;
        ans += f(a[i]) ;
    }
    printf("%d\n" ,ans) ;

    return 0;
}


E - Strictly Positive Matrix

给出一个a(i,j) >= 0 的矩阵A , 问是否存在整数k使 A^k 的每个a(i , j)  > 0 均成立 。

模板题做多了,思维有点僵 , 不太会变通。。

其实可以给出的是图的边 ,问是否存在这样的K, 在长度K的路径中,任意两点间均可到达 。

其实只要任意两点间可达(路径长度不限),那么这样的K就必然存在。

因为u到达v的路径长度可以是成周期性的 , 那么当路径长度为所有周期的公倍数时,所有的点均两两可达 。

于是就转换为求强联通的问题了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
using namespace std;
const int maxn = 2010 ;

int edge[maxn][maxn] , cnt[maxn] ;
int pre[maxn] , low[maxn] , sccno[maxn], dfs_clock , scc_cnt ;
stack<int>S;

void dfs(int u)
{
    S.push(u) ;
    pre[u] = low[u] = ++dfs_clock ;
    for(int i=0; i<cnt[u] ;i++){
        int v = edge[u][i] ;
        if(!pre[v])
        {
            dfs(v) ;
            low[u] = min(low[u] , low[v]) ;
        }
        else if(!sccno[v])
        {
            low[u] = min(low[u] , pre[v]) ;
        }
    }
    if(low[u] == pre[u])
    {
        scc_cnt ++ ;
        for(;;)
        {
            int x = S.top() ; S.pop() ;
            sccno[x] = scc_cnt ;
            if(x == u) break ;
        }
    }
}
int main()
{
    int n , x;
    scanf("%d",&n);
    for(int u=1 ;u<=n;u++)
        for(int v=1;v<=n;v++)
            if(scanf("%d",&x) , x) edge[u][cnt[u]++] = v;
    for(int i=1; i<=n ;i++)
        if(!pre[i]) dfs(i);
    if(scc_cnt == 1) printf("YES\n") ;
    else printf("NO\n") ;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值