我想静静

坚持是一种美德

Spark 添加复用JDBC Schema功能


1)   修改原因

  用户需要阅读大量相同的数据库表,比如相同schema的表有1000张(比如对mysql进行分表分库)需要全读,每次建立dataframe的时候需要通过jdbcrelation去查询每一张表的schema,需要消耗了大量时间。本文对提出一种修改办法,如果用户知道表的sechema相同,可以使用sechema复用功能。

 

2)   代码流程

val df = sqlContext.read().format("jdbc").options(dfOptions).load();

->resolved= ResolvedDataSource(

      sqlContext,

      userSpecifiedSchema =userSpecifiedSchema,

      partitionColumns = Array.empty[String],

      provider = source,

      options = extraOptions.toMap)  //解析数据源,获取jdbc、parquet、josn的schema参数

->dataSource.createRelation(sqlContext,new CaseInsensitiveMap(options)) //传入options

->JDBCRelation(url, table, parts, properties)(sqlContext)  //获取jdbc的relation

->override val schema= JDBCRDD.resolveTable(url, table, properties)  //获取schema

->conn.prepareStatement(s"SELECT * FROM $table WHERE1=0").executeQuery() //直接读取database,需要优化

 

3)   修改方法

在用户知道schema的情况下,没有必要重复获取schema;

用户定义是否需要重复使用schema,修改代码流程最小;

修改方法:

a)      用户通过Options传入需要复用schema的开关:

   dfOptions.put("jdbcschemakey","sparkourtest");

b)     建立一个hashtable,保存已经获取的shema

val schemaHashTable= newjava.util.HashMap[String,StructType]()

c)      schema获取流程:


4)   修改代码

29a30

> import org.apache.spark.Logging

40c41

< private[sql] object JDBCRelation {

---

> private[sql] object JDBCRelation{

48a50,55

>

>

>   // add by Ricky for get same table schema

>

>   val schemaHashTable= new java.util.HashMap[String,StructType]()

>

117c124

< private[sql] case class JDBCRelation(

---

> private[sql] case class JDBCRelation  (

124c131

<   with InsertableRelation {

---

>   with InsertableRelation with Logging{

128c135,160

<   override val schema: StructType = JDBCRDD.resolveTable(url, table, properties)

---

>

>   // add by Ricky for get same table schema

>   def  getSchema():StructType={

>     //val schemaKey = properties.getProperty("jdbcSchemaKey")

>     val schemaKey = properties.getProperty("jdbcschemakey")

>     if (schemaKey != null) {

>       val schemaStored = JDBCRelation.schemaHashTable.get(schemaKey)

>       if (schemaStored != null) {

>         schemaStored

>       } else {

>         val schemaStored = JDBCRDD.resolveTable(url, table, properties)

>         logInfo("schemaKey configed,schemaHashTable empty,now put  "+schemaKey.toString)

>         JDBCRelation.schemaHashTable.put(schemaKey, schemaStored)

>         schemaStored

>       }

>     }

>     else

>     {

>       JDBCRDD.resolveTable(url, table, properties)

>     }

>

>   }

>

>   override val schema: StructType = getSchema()

> // end by Ricky

> //  override val schema: StructType = JDBCRDD.resolveTable(url, table, properties)

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011291159/article/details/49904307
个人分类: 大数据 spark
上一篇Spark1.5.2 on Hadoop2.4.0 安装配置
下一篇Spark standlone driver on cluster 用户权限问题
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭