weka[11] - DBSCAN

DBSCAN是一种基于密度的聚类算法,它能处理任意形状的簇并忽略噪声点。与传统聚类算法如K-MEANS相比,DBSCAN无需预设簇的数量,且对簇形状无偏见。然而,它在处理大规模数据和密度不均匀的簇时可能表现不佳。在实际应用中,DBSCAN通过expandCluster等方法来构建聚类。
摘要由CSDN通过智能技术生成

DBSCAN介绍可以看wiki:http://en.wikipedia.org/wiki/DBSCAN

http://www.cnblogs.com/chaosimple/archive/2013/07/01/3164775.html 盗了个开头,作者原谅原谅啊。

1、DBSCAN简介

DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,它将簇定义为密度相连的点的最大集合。

该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。DBSCAN算法的显著优点是聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类。但是由于它直接对整个数据库进行操作且进行聚类时使用了一个全局性的表征密度的参数,因此也具有两个比较明显的弱点:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值