语音学习笔记2------matlab实现傅里叶变换

本文介绍了如何使用Matlab进行快速傅里叶变换(FFT)来分析音频文件,特别是针对A5音叉录音的实例。通过FFT,可以揭示信号的频率成分,例如在440Hz处发现“A5”的频率峰值。此外,文章还讨论了FFT结果的幅值处理和在不同领域的应用,包括二维傅里叶变换在图像分析中的应用。
摘要由CSDN通过智能技术生成

Matlab是一个在很多科学和工程领域都非常有用的数学工具。傅里叶变换在信号处理、物理、通信、地质学、天文学、光学等很多领域都有应用。这个技术将一个函数或是一组数据从时域或是取样域变换到频域。这意味着,傅里叶变换可以展示一组时间序列数据的频率分量。离散傅里叶变换是将取样域的离散数据转化到频域。快速傅里叶变换是一种高效进行离散傅里叶变换的方法,并且存在很多种方法来完成快速傅里叶变换。Matlab 使用快速傅里叶变换来得到离散数据的频域分量。下面是一个在 Matlab 中如何用快速傅里叶变换来分析音频文件的例子。这个例子中的文件是记录在 A5上的音叉录音。这个展示了傅里叶变换如何进行和如何在 Matlab 中使用这项技术。

function test_20161214
[y,Fs]=audioread('C:\Users\wxq\Desktop\66666.wav')

Nsamps = length(y);
t = (1/Fs)*(1:Nsamps)          %Prepare time data for plot

%Do Fourier Transform
y_fft = abs(fft(y));            %Retain Magnitude
y_fft = y_fft(1:Nsamps/2);      %Discard Half of Points
f = Fs*(0:Nsamps/2-1)/Nsamps;   %Prepare freq data for plot

%Plot Sound File in Time Domain
figure
plot(t, y)
xlabel('Time (s)')
ylabel('Amplitude')
title('Tuning Fork A4 in Time Domain')

%Plot Sound Fil
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值