语音学习笔记3------matlab实现傅里叶反变换ifft()函数

本文介绍了如何在MATLAB中使用ifft()函数进行傅里叶逆变换,详细阐述了其参数用法和注意事项,并提到了共轭对称性对计算效率的影响。此外,还提及了FFTW工具对于提高ifft()速度的作用,最后提供了相关学习交流资源。
摘要由CSDN通过智能技术生成


上一篇博客我们了解到,可以将一个语音信号傅里叶变换,那么,我们能不能逆向推回去呢,用已经存在的数据进行傅里叶逆变换?答案是肯定的。下面就讲讲如何实现傅里叶的反变换。

[y,Fs]=audioread('C:\Users\wxq\Desktop\66666.wav')
Nsamps = length(y);
t = (1/Fs)*(1:Nsamps)          %Prepare time data for plot
%Do Fourier Transform
y_fft = abs(fft(y));            %Retain Magnitude%y_fft = fft(y); 
y1=ifft(y_fft);
figure;
plot(t ,y1);


傅里叶变换的函数是ifft();但是ifft()有很多引用的参数语法讲究。

y = ifft(X)


y = ifft(X,n)


y = ifft(X,[],dim)


y = ifft(X,n,dim)


y = ifft(..., 'symmetric')


y = ifft(..., 'nonsymmetric')


Y = IFFT(x)的逆离散傅里叶变换的回报(DFT)向量X,用快速傅里叶变换(FFT)算


法计算。如果x是一个矩阵,IFFT返回每个列的矩阵的逆DFT。

好,我知道了。关于MATLAB中ifft函数的用法、性质、特性以及与fft的组合应用,我可以给您做一个详细的解析。 一、ifft函数的用法 MATLAB中ifft函数是用来进行快速傅里叶变换函数。其基本语法为: x = ifft(X) 其中,X表示需要进行逆变换的频域信号,x表示逆变换后的时域信号。 二、ifft函数的性质 1. 线性性质 ifft函数具有线性性质,即ifft(aX + bY) = aifft(X) + bifft(Y),其中a和b为常数,X和Y为频域信号。 2. 对称性质 ifft函数具有对称性质,即ifft(X) = conj(ifft(conj(X))),其中conj表示对X的共轭。 3. 卷积性质 ifft函数具有卷积性质,即ifft(XY) = ifft(X) * ifft(Y),其中*表示时域卷积运算。 三、ifft函数的特性 1. 时间复杂度 ifft函数的时间复杂度为O(N log N),其中N为信号的长度。 2. 精度 ifft函数的精度取决于输入信号的精度以及计算机的浮点数运算精度。 3. 实数信号 当输入信号为实数信号时,ifft函数的输出也为实数信号。 四、ifftfft的组合应用 1. 频域滤波 将时域信号进行傅里叶变换得到频域信号,对频域信号进行滤波处理,然后将滤波后的频域信号进行傅里叶变换得到时域信号。 2. 快速卷积 将两个时域信号进行傅里叶变换得到频域信号,对两个频域信号进行逐元素相乘,然后将相乘后的频域信号进行傅里叶变换得到卷积结果。 下面是一个使用ifft函数实现快速卷积的示例代码: ``` function y = fast_conv(x, h) % 快速卷积函数 % 输入:x - 输入信号,h - 卷积核 % 输出:y - 卷积结果 % 对输入信号和卷积核进行傅里叶变换 X = fft(x); H = fft(h); % 对两个频域信号逐元素相乘 Y = X .* H; % 将相乘后的频域信号进行傅里叶变换 y = ifft(Y); end ``` 以上就是MATLAB中ifft函数的用法、性质、特性以及与fft的组合应用的全面解析,希望能对您有所帮助。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值