计算机视觉与深度学习 | 工业视觉缺陷检测如何检小缺陷?背景概述,原理,检测难点,常用的检测算法,算法评估指标,新项目算法选择,算法部署

工业视觉小缺陷检测技术解析

背景概述

工业视觉缺陷检测是智能制造中质量控制的核心环节,而小缺陷检测(如微米级划痕、点状污渍、细微裂纹等)因其目标小、易受干扰等特点,成为技术难点。随着制造业对精度要求提升(如3C电子、半导体、精密零部件行业),传统人工目检和基础算法已无法满足需求,深度学习与成像技术的结合成为主流解决方案。例如,腾讯优图通过亚微米级成像技术实现精密部件缺陷检测,阿丘科技在手机镜头检测中结合AI与传统算法提升准确率。


检测原理

小缺陷检测的核心是通过高分辨率成像与算法分析,提取微小异常特征。其流程通常包括:

  1. 成像增强:采用动态自适应多焦成像(如腾讯优图的蝶式结构复原算法)或光度立体法(Halcon),通过多角度光源捕捉表面梯度信息,增强缺陷对比度。
  2. 图像预处理:降噪(高斯滤波、中值滤波)、直方图均衡化、频域变换(傅里叶滤波)等,减少背景干扰。
  3. 特征提取与分类:传统算法依赖灰度、纹理、形状特征&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值