计算机视觉与深度学习 | 基于Transformer的低照度图像增强技术

基于Transformer的低照度图像增强技术通过结合Transformer的全局建模能力和传统图像增强理论(如Retinex),在保留颜色信息、抑制噪声和平衡亮度方面展现出显著优势。以下是其核心原理、关键公式及典型代码实现:


一、原理分析

1. 全局依赖建模与局部特征融合

  • Transformer的核心优势:通过自注意力机制(Self-Attention)捕捉长距离像素间的依赖关系,弥补传统CNN局部感受野的局限性。
  • 混合架构设计:多数方法采用CNN-Transformer混合结构,如RT-UNet结合轴向多头自注意力(Axial Multi-Head Attention)和U型网络,在编码器-解码器中平衡局部细节与全局上下文。

2. 颜色空间分离与亮度增强

  • HSV空间分解:将RGB图像转换为HSV空间,保留色调(H)和饱和度(S),仅对亮度(V)进行增强。通过改进Retinex理论,引入扰动项生成多亮度图,结合亮度引导T
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值