题意:给出n个数的数列a,bi的取值为在1 <= j < i之间如果存在aj % ai == 0,则取最大下标的值赋给bi,如果不存在,则bi = ai;ci的取值为在i < j <= n之间如果存在aj % ai == 0,则取最小下标值赋给bi,如果不存在,则ci = ai。求b1 * c1 + b2 * c2 + ... + bn * cn的和。
思路:如果直接暴力的话一定会超时,所以我们可以开一个vis数组来记录每一个值所对应的最大的下标是多少。即每查找ai,分解出ai的质因子,更新vis数组。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef __int64 ll;
//typedef long long ll;
const int MAXN = 100005;
int a[MAXN], b[MAXN], c[MAXN], vis[MAXN];
int n;
int main() {
while (scanf("%d", &n) && n) {
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= n; i++) {
if (vis[a[i]])
b[i] = a[vis[a[i]]];
else
b[i] = a[i];
for (int j = 1; j <= (int)sqrt((double)a[i]) + 1; j++) {
if (a[i] % j == 0) {
vis[j] = i;
vis[a[i] / j] = i;
}
}
}
memset(vis, 0, sizeof(vis));
for (int i = n; i >= 1; i--) {
if (vis[a[i]])
c[i] = a[vis[a[i]]];
else
c[i] = a[i];
for (int j = 1; j <= (int)sqrt((double)a[i]) + 1; j++) {
if (a[i] % j == 0) {
vis[j] = i;
vis[a[i] / j] = i;
}
}
}
ll sum = 0;
for (int i = 1; i <= n; i++) {
sum += (ll)b[i] * c[i];
}
printf("%I64d\n", sum);
}
return 0;
}