1. 研究背景与意义
1.1 情感分析的定义与应用
情感分析是指对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程,其目的是判断文本作者的情感倾向,即文本是表达正面情绪、负面情绪还是中性情绪。在电影评论领域,情感分析具有重要的应用价值。通过分析电影评论中的情感倾向,电影制片方可以了解观众对电影的接受程度和喜好,从而为电影的宣传、推广和后续制作提供参考依据。例如,根据研究显示,电影评论中的正面情感比例与电影的票房收入呈正相关关系,正面情感占比每提高10%,电影的票房收入平均可增长15%左右。此外,情感分析还可以帮助电影评论网站和社交媒体平台更好地管理用户评论,及时发现和处理负面评论,维护良好的社区氛围。对于观众而言,情感分析的结果可以作为他们选择观看电影的一个参考因素,帮助他们更快地了解电影的口碑情况。
1.2 神经网络在情感分析中的优势
神经网络是一种模拟人脑神经元网络结构和功能的人工智能模型,具有强大的非线性拟合能力和自学习能力。在情感分析中,神经网络能够自动学习文本数据中的复杂特征和模式,从而更准确地判断情感倾向。与传统的基于规则和词典的情感分析方法相比,神经网络不需要人工设计复杂的规则和词典,能够自动从大规模的标注数据中学习情感特征,具有更好的适应性和泛化能力。例如,卷积神经网络