通俗易懂的理解卷积

本文转自:https://www.zhihu.com/question/22298352/answer/34267457

直接看图,不信看不懂。以离散信号为例,连续信号同理。

已知x[0] = a, x[1] = b, x[2]=c

<img src="https://pic1.zhimg.com/50/153fd3e7911d486edaf0475afb1e54b3_hd.jpg" data-rawwidth="600" data-rawheight="214" class="origin_image zh-lightbox-thumb" width="600" data-original="https://pic1.zhimg.com/153fd3e7911d486edaf0475afb1e54b3_r.jpg">

已知y[0] = i, y[1] = j, y[2]=k

<img src="https://pic4.zhimg.com/50/c47d9d7f7a29c491782bf7b1baea3f8e_hd.jpg" data-rawwidth="600" data-rawheight="214" class="origin_image zh-lightbox-thumb" width="600" data-original="https://pic4.zhimg.com/c47d9d7f7a29c491782bf7b1baea3f8e_r.jpg">

下面通过演示求x[n] * y[n]的过程,揭示卷积的物理意义。

第一步,x[n]乘以y[0]并平移到位置0:

<img src="https://pic4.zhimg.com/50/91f5eff235013ac729c44e98b3a537d0_hd.jpg" data-rawwidth="600" data-rawheight="214" class="origin_image zh-lightbox-thumb" width="600" data-original="https://pic4.zhimg.com/91f5eff235013ac729c44e98b3a537d0_r.jpg">
第二步, x[n]乘以 y[1]并平移到位置1:
<img src="https://pic1.zhimg.com/50/67c05239b05f671766b9df9393026f2c_hd.jpg" data-rawwidth="600" data-rawheight="214" class="origin_image zh-lightbox-thumb" width="600" data-original="https://pic1.zhimg.com/67c05239b05f671766b9df9393026f2c_r.jpg">
第三步, x[n]乘以 y[2]并平移到位置2:
<img src="https://pic2.zhimg.com/50/c34e839a49c6b616c57bde3c3dbbd67d_hd.jpg" data-rawwidth="600" data-rawheight="214" class="origin_image zh-lightbox-thumb" width="600" data-original="https://pic2.zhimg.com/c34e839a49c6b616c57bde3c3dbbd67d_r.jpg">
最后,把上面三个图叠加,就得到了 x[n] * y[n]
<img src="https://pic3.zhimg.com/50/4ce6cdcc28b10aca73db3f877d86ca02_hd.jpg" data-rawwidth="600" data-rawheight="313" class="origin_image zh-lightbox-thumb" width="600" data-original="https://pic3.zhimg.com/4ce6cdcc28b10aca73db3f877d86ca02_r.jpg">
简单吧?无非是 平移(没有反褶!)、叠加。

====================================================

从这里,可以看到卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。


重复一遍,这就是卷积的意义:加权叠加

对于线性时不变系统,如果知道该系统的单位响应,那么将单位响应和输入信号求卷积,就相当于把输入信号的各个时间点的单位响应 加权叠加,就直接得到了输出信号。


通俗的说:
在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。
这正是单位响应是如此重要的原因。

作者:张俊博
链接:https://www.zhihu.com/question/22298352/answer/34267457
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我会尽力用通俗易懂的语言来解释Transformer。 Transformer是一种用于处理序列数据的模型,它在自然语言处理领域有着重要的应用,比如机器翻译、文本生成等任务。 传统的序列模型,比如循环神经网络(RNN)和长短时记忆网络(LSTM),在处理长序列时可能会面临信息传递不足或者梯度消失等问题。而Transformer则采用了一种全新的架构,它不依赖于循环或者卷积操作,而是利用了自注意力机制(Self-Attention)。 自注意力机制可以帮助模型在处理序列时更好地关注不同位置之间的依赖关系。在Transformer中,输入序列会通过多层的注意力模块进行处理。每个注意力模块都包含了多头注意力机制,它能够同时关注输入序列中不同位置的信息。这样一来,模型可以更好地理解输入序列中不同位置之间的关系,并将这些关系融合到特征表示中。 除了自注意力机制,Transformer还引入了残差连接和层归一化来加强模型的训练效果和稳定性。残差连接可以帮助信息在模型中更快地传播,层归一化则可以对每一层的输入进行归一化,有助于加速训练过程。 Transformer的优势在于能够并行计算,因为自注意力机制可以同时计算不同位置的注意力权重。这使得Transformer在处理长序列时更加高效,并且能够处理更多的输入信息。 要掌握Transformer的理论知识,你可以深入学习相关的教材和论文。了解自注意力机制的原理、计算方法以及Transformer的整体架构是非常重要的。此外,通过实践项目来应用Transformer也是非常有帮助的,比如构建一个机器翻译系统或者文本生成模型。 希望这样的解释对你有帮助!如果还有其他问题,请随时提问。祝你在学习NLP的道路上取得进步!加油!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值