- 博客(16)
- 资源 (1)
- 收藏
- 关注
转载 Matlab图像标题_title
xlabel('x'):图像下方加标题x;title:实现图像任意位置加标题。 Example:实现任意个数图像且携带任意标题(应用绿色循环实现多个图像同时显示) close all; for i=1:10 figure(i); x = -pi:.1:pi; y = sin(x); plot(x,y);
2015-04-14 09:19:41
8474
转载 Deep Learning(深度学习)学习笔记
目录:一、概述二、背景三、人脑视觉机理四、关于特征 4.1、特征表示的粒度 4.2、初级(浅层)特征表示 4.3、结构性特征表示 4.4、需要有多少个特征?五、Deep Learning的基本思想六、浅层学习(Shallow Learning)和深度学习(Deep Learning)七、Deep l
2015-04-09 20:32:33
781
转载 深圳恒波软件公司LockDir加密软件原理与破解
1.首先,示范:给D盘一个文件夹加密,暂时命名为 tttt2.显示系统隐藏文件,我们发现tttt文件夹下多了两个文件,Thumbs.db desktop.ini 第一个是伪装成打印机的样子,其实我们加密的东西都放在里面,我们以下的破解步骤主要是对它做处理,第二个不多说了,文件夹图标相关。 ---> (如何显示系统隐藏文件跳过,这步不会的看文章最底部)3.开始-->运行-
2015-04-06 11:17:15
6822
3
原创 LBP局部特征提取算法
一、LBP提出 局部二值模式(Local binary patterns,LBP)是机器视觉领域中用于描述图像局部纹理特征的算子,具有旋转不变性和灰度不变性等显著的优点。它是由T. Ojala, M.Pietik?inen, 和 D. Harwood [1][2]在1994年提出,LBP在纹理分类问题上是一个非常强大的特征。 原始的LBP算子定义为在3*3的窗口内,以窗口中心
2015-04-04 15:49:39
1709
原创 期望与期望值
一、定义在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于
2015-04-02 15:14:41
6213
原创 Sobel算子学习与理解
一、Sobel边缘检测算子 在讨论边缘算子之前,首先给出一些术语的定义: (1)边缘:灰度或结构等信息的突变处,边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。 (2)边缘点:图像中具有坐标[x,y],且处在强度显著变化的位置上的点。 (3)边缘段:对应于边缘点坐标[x,y]及其方位 ,边缘的方位可能是梯度角。二、Sobel算子的原理
2015-04-02 14:27:46
1197
原创 字典学习
字典构造方法:一般分为两种:解析方法和学习方法.解析方法构造的字典通过事先定义好的某种数学变换或调和分析方法来构造,字典中的每个原了可用数学函数或少量的参数来刻画,如离散余弦变换、小波变换、双树复数小波变换、轮廓波变换、Shearlet, Grouplet}ls)以及参数化字典[is)等.该方法虽然构造相对简单,计算复杂度低,但原子的基本形状固定,原了的形态不够丰富,不能与图像本身的复杂结构最
2015-03-30 19:20:15
1861
翻译 高斯平滑
高斯平滑Common Names: Gaussian smoothing 简述:高斯平滑操作是一种2-D的卷积操作,应用于模糊图像中,去除细节和噪声。从这个意思上说,它类似于均值滤波器,但是使用的是不同的内核,表示高斯驼峰形状(钟形)。这个内核具有一些特殊的性质,具体说明如下:如何实现:一维高斯分布形式:是分布的标准偏差,我们也可以假
2015-03-23 16:47:11
15365
2
翻译 内核
内核内核(通常)是一个短小的数值矩阵,用于图像的卷积运行。不同大小的内核包含不同的数值模式可以产生不同的卷积运算结果。例如:图1显示一个3x3的内核执行实现均值滤波。Figure 1 Convolution kernel for a mean filter with 3×3 neighborhood.字‘内核’也常常用来表示一个结构元素的同义词,相当于数学形态学中的一个
2015-03-23 16:21:16
915
原创 梯度直方图特征(HOG)
梯度直方图特征(HOG) 梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以H
2015-03-20 09:17:11
928
原创 图像梯度方向直方图学习(1)
图像梯度方向直方图学习(1) HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形
2015-03-20 09:14:45
711
原创 卷积 的理解
卷积:其实就是---通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与经过翻转和平移的g的重叠部分的面积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“移动平均”的推广。图示两个方形脉冲波的卷积。其中函数"g"首先对反射,接着平移"t",成为。那么重叠部份的面积就相当于"t"处的卷积,其中横坐标代表待积变量以及新函数的自变量"t"。从图像
2015-03-18 16:19:29
5223
1
转载 radon变换
两维情况下radon变换大致可以这样理解:一个平面内沿不同的直线(直线与原点的距离为d,方向角为alfa)对f(x,y)做线积分,得到的像F(d,alfa)就是函数f的Radon变换。也就是说,平面(d,alfa)的每个点的像函数值对应了原始函数的某个线积分值。一个更直观的理解是,假设你的手指被一个很强的平行光源透射,你迎着光源看到的手指图像就是手指的光衰减系数的三维Radon变换(小小的
2015-03-18 14:55:45
3855
转载 SIFT特征提取及应用
一、SIFT特征提取分析 SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配。尺度不变特征转换(Scale-invariant feature tra
2015-02-05 17:29:32
1040
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人