【题目链接】:http://acm.timus.ru/problem.aspx?space=1&num=1018
【分析】:
树形DP。题意:一颗二叉苹果树树上结苹果,要求剪掉几棵枝,然后求保留K个树枝能保留的最多到苹果数。状态:f[i][j]表示以i为树根,剪其子树下的j根枝能采摘的最大苹果数。与此同时,因为所有的苹果都结在边上,但是我们可以将之平移到叶子方向的节点上,这样根节点root就要假设有一条虚拟边接在其上,且其苹果数为0.状态转移方程:f[i][j]=max(ans[leftchild][k]+f[rightchild][j-k-1])+value,k∈[0,j),leftchild表示其左孩子的编号,value表示i与其父节点相连的那条边上的苹果数.边界情况:当i或j=0时,f[i][j]=0。那么f[N][K+1]为所求<因为前面虚拟了一条边,这样才符合意义>
【代码】:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define MAXN 101
struct EDGE{int t,next,v;};
struct POINT{int l,r,v;};
EDGE a[2*MAXN];
POINT b[MAXN];
int N,K,tot=0,last[MAXN],f[MAXN][MAXN];
bool vis[MAXN];
void add(int from,int to,int value)
{
a[++tot].t=to;
a[tot].v=value;
a[tot].next=last[from];
last[from]=tot;
}
void build(int now)
{
vis[now]=true;
for(int i=last[now];i;i=a[i].next)
{
if(!vis[a[i].t])
{
if(!b[now].l)//若没有记录左儿子
b[now].l=a[i].t;
else b[now].r=a[i].t;//否则记录右儿子<二叉树>
b[a[i].t].v=a[i].v;
build(a[i].t);
}
}
}
int TREEDP(int now,int rest)
{
if(!now || !rest) return 0;
if(f[now][rest]) return f[now][rest];
for(int i=0;i<rest;i++)
f[now][rest]=max(f[now][rest],TREEDP(b[now].l,i)+TREEDP(b[now].r,rest-i-1));
f[now][rest]+=b[now].v;
return f[now][rest];
}
int main()
{
//freopen("input.in","r",stdin);
//freopen("output.out","w",stdout);
scanf("%d%d",&N,&K);
for(int i=1;i<N;i++)
{
int A,B,C;
scanf("%d%d%d",&A,&B,&C);
add(A,B,C);
add(B,A,C);
}
build(1);//建树
printf("%d\n",TREEDP(1,K+1));
//system("pause");
return 0;
}
转载注明出处:
http://blog.csdn.net/u011400953