题目描述
现在请求你维护一个数列,要求提供以下两种操作:1、 查询操作。语法:Q L 功能:查询当前数列中末尾L
个数中的最大的数,并输出这个数的值。限制:L不超过当前数列的长度。2、 插入操作。语法:A n 功能:将n加
上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取
模,将所得答案插入到数列的末尾。限制:n是非负整数并且在长整范围内。注意:初始时数列是空的,没有一个
数。
输入
第一行两个整数,M和D,其中M表示操作的个数(M <= 200,000),D如上文中所述,满足D在longint内。接下来
M行,查询操作或者插入操作。
输出
对于每一个询问操作,输出一行。该行只有一个数,即序列中最后L个数的最大数。
样例输入
5 100
A 96
Q 1
A 97
Q 1
Q 2
A 96
Q 1
A 97
Q 1
Q 2
样例输出
96
93
96
93
96
提示
数据如下http://pan.baidu.com/s/1i4JxCH3
题解:
这题呢方法太多,详细总结见http://www.cnblogs.com/CtrlCV/p/5533204.html
我只会其中的两种;
方法一:单调栈
这没什么好说的,就是从最后往前面建一个单调栈,从大到小,然后每次询问时二分答案,每次插入时更新单调栈即可
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <queue>
#include <stack>
#include <set>
#include <vector>
#include <map>
using namespace std;
int i=0,len=1,tmp,m,t,n,d;
char c;
struct node{
int num,size;
} a[200005];
int find(int x){
int l=1,r=len;
int mm=(l+r)/2;
while(l<r-1){
mm=(l+r)/2;
if(a[mm].size<x)
l=mm;
else
r=mm;
}
if(a[l].size>=x)
return l;
return r;
}
int main(){
scanf("%d %d",&m,&d);
while(m--){
scanf("\n%c %d",&c,&n);
if(c=='A'){
i++;
n+=t;
n%=d;
while(len>0&&n>=a[len].num)
len--;
len++;
a[len].num=n;
a[len].size=i;
}
else{
n=i-n+1;
tmp=find(n);
t=a[tmp].num;
printf("%d\n",t);
}
}
return 0;
}
方法二:st表,跟一般的有所区别的是,建表时为了能动态更新,所以采取从后往前建表,st[n][i]=max{st[n][i-1],st[n-p[i-1]][i-1]}(p[i]是2^i)这样就水过去了
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#include <limits.h>
#include <malloc.h>
#include <ctype.h>
#include <float.h>
using namespace std;
int m,d,i,x,t,y,n,len;
char c;
int st[200005][22];
int p[105];
int main(){
scanf("%d %d\n",&m,&d);
p[0]=1;
for(i=1;i<=30;i++)
p[i]=2*p[i-1];
while(m--){
scanf("%c %d\n",&c,&x);
if(c=='Q'){
t=0;
i=len;
y=n;
while(x>0&&i>=0){
if(x<p[i]){i--;continue;}
t=max(t,st[y][i]);
x-=p[i];
y-=p[i];
i--;
}
printf("%d\n",t);
}
else{
n++;
if(p[len+1]<=n)
len++;
i=1;
st[n][0]=(t+x)%d;
while(i<=len){
st[n][i]=max(st[n][i-1],st[n-p[i-1]][i-1]);
i++;
}
}
}
return 0;
}