线性回归学习笔记

本文详细介绍了线性回归的基本概念,包括一元和多元线性回归,以及线性回归模型的构建。重点阐述了线性回归的目标函数、最小二乘法求解过程,以及梯度下降法在求解线性回归参数中的应用。通过理解扰动项的正态性、方差齐性和独立性,以及极大似然估计原理,逐步推导出梯度下降的迭代公式,揭示了线性回归的学习过程。
摘要由CSDN通过智能技术生成

线性回归基本概念

当预测值(即因变量)为连续型变量时,我们称之为回归。只涉及一个自变量时,称为一元回归,涉及多个自变量时,则称为多元回归。如果因变量变量与自变量之间是线性关系,则称为线性回归,如果因变量与自变量之间是非线性关系则称为非线性回归

线性回归预测模型

首先,假设我们要预测的因变量y与自变量x之间存在线性关系。且每个x对y的影响程度不同,即x以一定权重影响y的变化。所以,可以将x与y的关系写成: y = θ 0 + θ 1 x 1 + . . . + θ n x n y=\theta_0+\theta_1x_1+...+\theta_nx_n y=θ0+θ1x1+...+θnxn。其中, θ 0 \theta_0 θ0是偏置项。让 θ 0 \theta_0 θ0乘以一列1,进而可以将上式写成,记为式(1):
y = θ T x (1) y=\theta^Tx \tag{1} y=θTx(1)

上式便可以理解为我们的预测模型。即在确定参数 θ \theta θ后,给定一组x值,可以计算出预测值y。

关于偏置项的理解。在一元线性回归时,偏置项是直角坐标系中,回归直线在y轴上的截距。

我们可以想像,如果我们能够找出所有对y产生影响的因素,那么上式既为x与y的线性模型。但现实世界,我们不可能找到所有的x,这就导致真实值与模型之前存在一定的误差。所以,我们要增加一个误差项或扰动项。记为式(2):
y ( i ) = θ T x ( i ) + ε ( i ) (2) y^{(i)}=\theta^Tx^{(i)}+\varepsilon^{(i)} \tag{2} y(i)=θTx(i)+ε(i)(2)

上式中的y可以理解为真实值,或样本值(即训练数据中的y值)。

扰动项 ε \varepsilon ε满足以下条件:

  • 正态性 ε \varepsilon ε是一个服从正态分布的随机变量,且期望值为0,即 ε ∼ N ( 0 , σ 2 ) \varepsilon\sim N(0,\sigma^2) εN(0,σ2)
  • 方差齐性。对于所有的x值, ε \varepsilon ε的方差也都等于 σ 2 \sigma^2 σ2都相同。
  • 独立性。独立性着对于一个特定的x值,它所对应的 ε \varepsilon ε与其他x值所对应的 ε \varepsilon ε不相关;对于一个特定的x值,它所对应的y值与其他x所对应的y值也不相关。
  • 关于正态性。想像一元线性回归,回归方程是一条直线,我们希望这条直线能够穿过所有真实点,越中间越好。即直线与上下的点的差值之和越小越好,即均值趋近于0。
  • 关于方差。我们后面的推导暂时用不到方差。
  • 关于独立性。我们视每个样本或每条数据为一次随机试验,第一次试验产生的误差不会影响第二次试验。独立性无法用数学去检验。我们应从业务上,尽量保证一个x的变化不受其它x的影响。

关于扰动项,我们可能会想,它为什么会满足这些条件。这里是因为,我们希望找到一个模型,能够最大程度描述所有的数据。这就要求对于所有真实点,误差和越小越好。从图上看就是模型这条线,越在散点的中间越好。所以,扰动项满足这些条件,是我们对找出这样一个模型的目标假定的前提条件。只有满足这样的条件,得到的模型才是我们最初的目标。

线性回归目标函数及求解

至此,我们已经得到线性回归模型。那么,我们来梳理一下已知、未知条件。在预测模型式(1)中,我们唯一需要确定的就是参数 θ \theta θ,即我们求解的目标是参数 θ \theta θ。我们可以利用式(2)中 ε \varepsilon ε的特性来求解。
这其实是一个参数估计问题。在式(2)中,x、y是真实值,可以用我们训练数据往里套。 θ \theta θ是求解的目标。而 ε \varepsilon ε我们已知它的分布。显然,这是一个“模型已定,参数未知”情况。

统计学的套路一般都是先要有统计量,已知该统计量服从某种分布,然后再利用其特性,用统计学方法解决问题。这里其实是利用扰动项服从正态分布这个条件,来引入极大似然估计。

根据正态分布密度函数得:
p ( ε ( i ) ) = 1 2 π σ e − ( ε ( i ) ) 2 2 σ 2 p(\varepsilon^{(i)})=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(\varepsilon^{(i)})^2}{2\sigma^2}} p(ε(i))=2π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值