根据地兵布阵的题目写的,个人感觉树状数组的优势完全体现在了lowbit这个函数上,无论是更新函数还是求和函数,lowbit的作用一目了然,相对于线段树的做法不同的是,线段树的搜索是从上往下开始搜的(画出线段树的形状),而树状数组的从底层开始向上更新的,无论是更新时间还是求和时间其复杂度均为logN,并且其空间和编程复杂度上优先于线段树,相同点大概就是sum的方法都是大范围内的数减去小范围内的数。下面是树状数组的图便于理解虽然图画的挺丑,大家可以看到漂浮的几个方块都是B数组里面的元素。其中运用了一个共识B(n)=A(n-a^k+1)+...A(n),其中的k表示的是n的二进制形式中末尾0的个数,注意是末尾== 当然了,你可以不用想那么多,这里的lowbit函数完美解决了这一点== a^k就可以写成lowbit(n),,,
#include<string.h>
int n, a[50005];
char str[1005];
int lowbit(int i) //基于二进制补码运算,是树状数组中最精髓的体现,大量节省了sum函数和update函数的时间;
{
return i&(-i);// return i&(i^(i-1))
}
void update(int i, int val) //更新函数
{
while(i <= n)
{
a[i] += val;
i += lowbit(i);
}
}
int sum(int i) // 求和函数
{
int sum = 0;
while(i > 0)
{
sum += a[i];
i -= lowbit(i);
}<br>
return sum;
}
int main()
{
int i, val, t, x, y;
scanf("%d", &t);
while(t--)
{
memset(a, 0, sizeof(a));
scanf("%d", &n);
for(i = 1; i <= n; i++)
{
scanf("%d", &val);
update(i, val);
}
while(scanf("%s", str))
{
if(str[0] == 'E')//en
scanf("%d %d", &x, &y);
if(str[0] == 'A')//add
<update(x, y);
else if(str[0] == 'S')//sub
update(x, -y);
else
printf("%d\n", sum(y)-sum(x-1)); /*query,这里注意的是除了以上三种情况外,倘若在输入格式错误后,结果会是数字之间的和,当然也可以判断这里的str里面所有的字母是否符合条件;*/
}
}
return 0;
}