树状数组解敌兵布阵

1 篇文章 0 订阅
1 篇文章 0 订阅
根据地兵布阵的题目写的,个人感觉树状数组的优势完全体现在了lowbit这个函数上,无论是更新函数还是求和函数,lowbit的作用一目了然,相对于线段树的做法不同的是,线段树的搜索是从上往下开始搜的(画出线段树的形状),而树状数组的从底层开始向上更新的,无论是更新时间还是求和时间其复杂度均为logN,并且其空间和编程复杂度上优先于线段树,相同点大概就是sum的方法都是大范围内的数减去小范围内的数。下面是树状数组的图便于理解虽然图画的挺丑,大家可以看到漂浮的几个方块都是B数组里面的元素。其中运用了一个共识B(n)=A(n-a^k+1)+...A(n),其中的k表示的是n的二进制形式中末尾0的个数,注意是末尾== 当然了,你可以不用想那么多,这里的lowbit函数完美解决了这一点== a^k就可以写成lowbit(n),,,

#include<string.h>  
int n, a[50005]; 
char str[1005];

int lowbit(int i)  //基于二进制补码运算,是树状数组中最精髓的体现,大量节省了sum函数和update函数的时间;
{ 
    return i&(-i);// return i&(i^(i-1))
}
void update(int i, int val) //更新函数
{
    while(i <= n)
    {
        a[i] += val;
        i += lowbit(i);
    }
}
int sum(int i) // 求和函数
{  
    int sum = 0;
    while(i > 0)
    {
        sum += a[i];
        i -= lowbit(i);
    }<br>  
		return sum;  
} 
int main()  
{
    int i, val, t, x, y;
    scanf("%d", &t); 
    while(t--)
    { 
        memset(a, 0, sizeof(a));
        scanf("%d", &n);
        for(i = 1; i <= n; i++)
        { 
            scanf("%d", &val);
            update(i, val);
        }
        while(scanf("%s", str))
        {
            if(str[0] == 'E')//en
				scanf("%d %d", &x, &y);
            if(str[0] == 'A')//add
				<update(x, y);
            else if(str[0] == 'S')//sub
				update(x, -y); 
            else
				printf("%d\n", sum(y)-sum(x-1)); /*query,这里注意的是除了以上三种情况外,倘若在输入格式错误后,结果会是数字之间的和,当然也可以判断这里的str里面所有的字母是否符合条件;*/
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值