POJ 1436 Horizontally Visible Segments

线段树,注意当某单位长度两端点被覆盖后中间部分仍然可与后面相连,考虑到这种情况,将端点值乘2,一点表示端点,一点表示线段。

很久没写线段树,完全不熟,一开始没有pushup...写了4个小时。真挫。

确定三角形时稍微处理了下,但三个for还是有点大,波神说可以用类似状态压缩的东西搞定

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int N=8005;
bool m[N][N];
int n;
struct co
{
    int y1;
    int y2;
    int x;
} hehe[N];
int a[N<<3];
int lazy[N<<3];
void pushdown(int rt)
{
    if(lazy[rt])
    {
        a[rt<<1]=lazy[rt];
        a[rt<<1|1]=lazy[rt];
        lazy[rt<<1]=lazy[rt];
        lazy[rt<<1|1]=lazy[rt];
        lazy[rt]=-1;
    }
}
void pushup(int rt)
{
    if(a[rt>>1]!=a[rt]){lazy[rt>>1]=-1;a[rt>>1]=-1;}
}
void build(int l,int r,int rt)
{
    a[rt]=0;
    lazy[rt]=0;
    if(l==r)return ;
    int m=(l+r)>>1;
    build(lson);
    build(rson);
}
void update(int L,int R,int id,int l,int r,int rt)
{
    if(L<=l&&r<=R&&a[rt]!=-1)
    {
        m[a[rt]][id]=1;
        m[id][a[rt]]=1;
        a[rt]=id;
        lazy[rt]=id;
        if((rt>>1)>0&&a[rt>>1]!=-1)pushup(rt);
        return ;
    }
    if(lazy[rt]!=-1)pushdown(rt);
    int m=(l+r)>>1;
    if(L<=m)update(L,R,id,lson);
    if(R>m)update(L,R,id,rson);
    if((rt>>1)>0&&a[rt>>1]!=-1)pushup(rt);
}
int cmp(co A,co B)
{
    if(A.x!=B.x)return A.x<B.x;
    return A.y1<B.y1;
}
int wq[8005];
int num;
int main()
{
    int t;
    scanf("%d",&t);
    int sum;
    while(t--)
    {
        sum=0;
        for(int i=1;i<=n;i++)
        {
            for(int j=i+1;j<=n;j++)
            {
                m[i][j]=0;
            }
        }
        build(0,N<<1,1);
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d%d",&hehe[i].y1,&hehe[i].y2,&hehe[i].x);
        }
        sort(hehe+1,hehe+n+1,cmp);
        for(int i=1;i<=n;i++)
        {
            update(hehe[i].y1<<1,hehe[i].y2<<1,i,0,N<<1,1);
        }
        for(int i=1;i<=n;i++)
        {
            num=0;
            for(int j=i+1;j<=n;j++)
            {
                if(m[i][j])
                {
                    wq[num]=j;
                    num++;
                }
            }
            for(int j=0;j<num;j++)
            {
                for(int k=j+1;k<num;k++)
                {
                    if(m[wq[j]][wq[k]]){sum++;}
                }
            }
        }
        printf("%d\n",sum);
    }


    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值