复旦NLP--文本相似度算法

本文介绍了复旦大学在自然语言处理领域的研究成果,重点探讨了用于文本相似度计算的算法实现,包括其准确度和效率的权衡。通过案例分析,展示了算法在新闻相似度检测中的应用,为机器学习领域的研究提供了参考。
摘要由CSDN通过智能技术生成

开场白


        大作业进了自然语言处理的坑,真是毁一生。作业涉及到文本相似度的比较,所以就打算用复旦的这个NLP包,之所以不用哈工大的那个,是因为复旦是友校嘛╮(╯-╰)╭
        先讲讲我们作业的应用场景吧,就是根据一个新闻找到他的相关新闻,看上去很简单,甚至直接百度就可以做到。但是后来发现结果并不是很令人满意,于是我们打算基于百度到的结果再对新闻的相关度进行比对。

算法实现


        复旦NLP是可以进行机器学习,训练,然后进行相似度的计算的。人家专门有个包是做这个的,但是我们这项目,本身期望不高,就没这么麻烦,于是乎就没有看这个包里面的东西,那除了训练以外,复旦NLP也提供有不需要训练直接计算的接口,那精度跟训练的比较起来如何我也就不知道了,反正能用就好╮(╯-╰)╭
        那不训练的算法其实也是看上去很科学的~首先针对两个文本a,b;第一步是调用相关的parser生成两个DependencyTree,至于这个
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值