数据结构
aresjan
这个作者很懒,什么都没留下…
展开
-
一致性hash算法 - consistent hashing
1、 情景分析前一篇博文分析了HashMap源码,HashMap在许多场景中作为存储数据的不二选择。 但是否使用HashMap就能解决所有在空间和时间的均衡问题?? 下面考虑使用HashMap的二个极端情景: 原来有 N 台Server,所有数据通过一种 hash 算法(以hash(key)%N为例)映射到 N 台Server 中。 情景一:其中的 ...2013-11-08 11:36:38 · 174 阅读 · 0 评论 -
深入浅出HashMap
java.util.HashMap深度学习一、散列表初探: 同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。 时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。两者均体现在消耗计算机重要的两个资源...2013-10-31 19:13:17 · 251 阅读 · 0 评论 -
MD5算法分析及java代码实现
MD5算法分析及其java代码实现 上一篇博文深入分析了java JDK中的java.util.HashMap类,其实哈希表在日常生活中用的十分广泛,从到数据存储,文件加密,数字签名。本篇博文主要介绍利用散列实现MD5加密算法。 对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的...2013-11-02 03:24:08 · 269 阅读 · 0 评论 -
位映射对大数据排重与排序
利用位映射原理对大数据排重 问题提出:M(如10亿)个int整数,只有其中N个数重复出现过,读取到内存中并将重复的整数删除。 问题分析:我们肯定会先想到在计算机内存中开辟M个int整型数据数组,来one bye one读取M个int类型数组, 然后在一一比对数值,最后将重复数据的去掉。当然这在处理小规模数据是可行的。 我们 考虑大数据的情...2013-11-05 00:37:19 · 481 阅读 · 0 评论 -
深入浅出HashMap
2013-10-31 19:13:17 · 141 阅读 · 0 评论 -
MD5算法分析及java代码实现
2013-11-02 03:24:08 · 156 阅读 · 0 评论 -
位映射对大数据排重与排序
析:我们肯定会先想到在计算机内存中开辟M个int整型数据数组,来one bye one读取M个int类型数组, 然后在一一比对数值,最后将重复数据的去掉。当然这在处理小规模数据是可行的。 我们 考虑大数据的情况:例如在java语言下,对10亿个int类型数据排重。 java中一个 int 类型在内存中占4 byte。那么10亿个int类型数据共需要开辟10 ^ 9次方 *4 byte ≈ 4GB 的连续内存空间。以 32 位操作系统电脑为例,最大支持内存为 4G, 可用2013-11-05 00:37:19 · 180 阅读 · 0 评论 -
一致性hash算法 - consistent hashing
2013-11-08 11:36:38 · 114 阅读 · 0 评论