一、单线和多线激光雷达的区别
激光雷达按照线束可分为单线以及多线,单线激光雷达是目前成本最低的激光雷达,成本低,也意味着最接近量产。单束激光的工作原理是发射器在激光雷达内部进行匀速的旋转,每旋转一个小角度即发射一次激光,轮巡一定的角度后,就生成了一帧完整的数据。但也意味着单线激光雷达只能识别同一高度一排点阵,只能描述线状信息,无法描述面以及高度。
二、激光雷达的多次回波
由于光束发散,任何一次激光发射出去都有可能产生多次激光返回。当激光脉冲发射出去后光斑逐渐变大。假设一个光斑足够大,可以打到多个目标物上,产生多个反射。通常情况下目标物距离越远,它在接收器上的能量就越弱,明亮或反光的表面情况可能会相反。
多回波被称为“multi-echo”,激光在物体表面发生了镜面反射再照射到别的物体,然后再原路返回,一样可以形成回波。这个叫做“multi-path”。激光雷达无法分辨multi-echo和multi-path。
双回波的设定是为了将所有的点云数据都纳入激光雷达的数据包中,实际上,双回波模式的回波数据大多数是重复的,也就是说大部分的激光束并没有被物体“切割”过,但数据帧中将一个回波存成两个回波数据
有没有三回波甚至四回波现象呢?理论上是有的,但是这与你的发射机功率有关。如果你的发射机功率大,你的多重回波功率就大,那么多重回波就可以被识别,这时三回波,四回拨乃至更多就有用了。如果你的雷达功率太低,不说三次或四次回波,甚至二次回波都无法识别,那么多次回波现象就没有必要了。所谓缺失的信息就归咎于发射机的功率问题而非接收机接受的问题。
三、雷达与照片在数据采集中的区别
LiDAR – 优势
- 主动采集过程
点云中的每个3D点都是实时采集和处理的。
- 多次回波数据
每个点都包含一系列有用的属性数据,包括回波强度,回波计数和分类信息(后期处理添加)。
- 数据共享
数据结构已经标准化,为数据共享和互操作性提供了最佳条件。
- 大区域测量
安装在飞机上的扫描仪可以相对较快地测量大面积的地理区域。
- 紧凑型设备
与早期的LiDAR硬件不同,扫描仪现在相对紧凑,甚至可以安装在无人机上。
- 地面(地形)探测
LiDAR可以穿透树叶和类似的障碍物,从而提供目标区域的完整3D表示。即使在森林茂密的地区,也可以进行地面探测。
- 快速发展的技术
例如,Geiger模式LiDAR(相对于传统的linear模式LIDAR)可以提供100 / sqm或更高的点密度。
- 精确性
这些点在理论上更准确,尤其是其高程值。
- DTM生成
LiDAR是生成数字地形模型的理想之选,因为与摄影测量法不同,LiDAR可以“穿透”到地面。
LiDAR – 不足
- 高成本
传统的激光雷达需要有人驾驶飞机来容纳必要的硬件。
- 对飞行条件的敏感性
LiDAR采集需要极佳的飞行条件。飞机的高度和速度也会影响点密度。
- 异常识别较差
原始LiDAR无法识别数据中的异常(例如飞行路径下方的鸟类)。
- 处理不一致
遇到被错误分类的公开提供的LiDAR文件并不少见。
PhoDAR – 优势
- 技术门槛低
这是一种使用成本低至万元的硬件创建点云的更便捷的方法。
- 按需&多样化的采集方式
可以在相对较小的区域内按需采集数据,进行最少的预先采集规划。
- 更高的点云密度
点密度通常比传统的LiDAR大很多。
- 数据可分类
摄影测量点云虽然本身不是LiDAR,但可以应用分类,并且可以导出到las或laz文件。
- 栅格赋色的点云
每个点都会自动继承相应图像的颜色。
- DSM生成
因为它无法像LiDAR一样穿透植被,因此非常适合生成数字表面模型。
PhoDAR – 不足
- 需要有特征要素(地物)
从图像获取点云需要在相应的区域具有明显的可见特征。
- 要求表面纹理具有多样性
当图像的表面纹理缺乏多样性(例如沙漠地区或大型停车场的表面)时,摄影点云的生成效果不佳。
- 需要充足的光线
与LiDAR不同,摄影测量法取决于充足的环境光线。生成点云需要清晰的图像,因此在弱光照条件下拍摄图像并不理想。
- 不宜进行地表探测
摄影无法像LiDAR一样“穿透”树冠。
- 阴影和天空不起作用
点云生成不适用于包含大阴影或大量天空的图像。
- 精度取决于地面控制
除非在处理阶段使用了地面控制点,否则水平精度和高程值将不那么准确。
- 覆盖范围通常有限
摄影测量点云的生成不适用于大面积覆盖区域。
- 颜色不一致
由于各个图像色彩的变化(不平衡),整个点云表面的色彩通常不一致。
- 需要更多的清理工作
反射性表面有时会在数据中引起更多的噪声点或异常,这就需要进行手动删除。电力线等更精细的要素可能不会像在LiDAR数据中那样显示。
LiDAR的理想用途
LiDAR是采集更大面积和更精细细节(例如电力线,管道和物体边缘)的数据的理想选择。它也是创建数字地形模型(DTM)的理想选择,因为传感器可以穿透植被,从而可以采集真实的地面点。
PhoDAR(摄影测量点云)的理想用途
摄影测量法是测量具有较少植被的较小区域的理想选择。由于摄影测量法无法像LiDAR那样穿透植被,因此通常更适合于生成数字表面模型,而不是地形模型。
适合LiDAR和摄影测量的理想软件
无论选择哪种点云生成方法,都可以使用 Global Mapper 和 LiDAR模块 来高效地处理成果数据。其广泛的编辑、可视化和分析工具的包括点云编辑和过滤、DTM或DSM创建、特征提取、等高线生成、体积计算等。
四、 雷达的设置条件如下
1、厂家说使用600KHZ是比较理想的,靠纯粹增加频率的方式增加点密度会适得其反
2、600KHZ是回波的一个门槛,600KHZ以下的都可以实现15次回波,但是600KHZ以上的仅仅可以实现5次回波,回波次数少意味着穿透力的下降
3、1800KHZ点频率,400米航高,雷达扫描带宽600米,如果设计航线为400米,那么旁向重叠率为30%
4、广西项目,范围面积67平方公里,按照上述参数数据采集,飞行时间为接近3小时,数据量大小为一分钟1G,总的文件大小为289G,是传统参数的6倍,数据量还是比较大的。
5、RIEGL机载激光VUX-240参数
五、具体的项目案例
1、先说结论,在植被不太茂密的地区,影像生成的点云数据和激光雷达采集的点云数据区别不大,基本上满足1:2000地形图的测图需求,但是1:500地形图或者植被茂密区域影像生成的点云数据就失灵了,激光雷达采集数据成为了唯一的手段。
2、两种数据做对比
2.1影像生成的DEM(两个红色的点为研究区域的起始位置)
2.2影像地面点数据和激光雷达原始点云数据(带状数据为激光雷达的原始点云数据,背景为影像提取的地面点点云数据,两个红色的点为研究区域的起始位置)
2.3影像地面点点云(两个红色的点为研究区域的起始位置)
2.4影像地面点点云-雷达原始点云-地形图(DEM)对比
3、典型案例分析
3.1分析区域三维实景模型
3.2分析区域影像地面点
3.3分析区域激光雷达原始数据
3.4分析区域影像地面点生成DEM模型
3.5分析区域激光雷达地面点生成DEM模型
3.6分析区域DEM模型差别模型(左侧颜色条表明两种方式采集的数据生成的模型之间的差距,也就是数据精度及反映实际地形地貌的能力)
3.7分析区域激光雷达地面点-影像DEM模型剖面对比(激光雷达地面点和影像地面点生成的DEM之间有较大的出入,实际比对现场即三维实景模型,激光雷达地面点反映的地形与现实一致,可靠性强,通过原始的激光雷达点云数据也可以清晰的看出该区域是植被茂密的覆盖区域,影像提取地面的时候造成了大面积的数据缺失空白地带,进而造成了生成的DEM错误)
3.8分析区域激光雷达原始点-影像DEM模型剖面对比(蓝色点云为第一次回波的显示,为植被的树冠,红颜色为最后一次回波数据,为植被下地表)
3.9分析区域影像地面点-影像DEM模型剖面对比(影像地面点很容易出现缺失的情况,这种情况下计算机根据周围的点模拟出分析区域的地形地貌特征,具有很大的偶然性,成果可靠性低,而激光雷达的穿透植被的特性可以保证植被区域的地面点的采集,从而可以更真实的表达地面的地形情况)
3.10分析区域激光雷达地面点-激光雷达DEM模型剖面对比
3.11分析区域等高线对比
4、大面积复杂地貌的案例
4.1分析区域影像地面点
4.2分析区域影像DEM
4.3分析区域激光雷达地面点数据
4.4分析区域激光雷达DEM(模型更加的光滑,连续性更加的好,原因:点的质量更高,点的密度更大,尤其是植被下面的地面点数据更多,点之间的连续性更真实)
4.5分析区域影像DEM与激光雷达DEM模型之间的差值模型,用来评价模型的一致性。
4.6最终成果等高线。