CT值

 

CT 值:量化的密度概念,用于描述 CT 图像密度高低的单位。它是将探测器测得的 X 线衰减系数通过一定的数学变换而得到的相对值。单位为 Hu(Hounsfield  unit)。目前通用的 CT 值概念是将水的 CT 值定为 0Hu,人体内密度最高的骨皮质 CT 值定为+1000Hu,密度最低的空气 CT 值为-1000  Hu,其它各种组织的 CT 值介于-1000 Hu~+1000Hu 之间。如软组织 CT 值多位于+20~+50 Hu,脂肪组织多位于-40~-90 Hu。人体各部分 CT 值如图所示。

图 1  人体各部分 CT 值

Fig 1 The CT value in parts of the body

在DICOM(Digital Imaging and Communications in Medicine)文件中,CT通常存储在像素数据( Pixel Data)的部分。测量特定区域的CT通常涉及以下几个步骤: 1. **文件解析**:首先需要读取并解析DICOM文件,可以使用像Python的Pydicom库这样的工具,它提供了处理DICOM图像数据的功能。 ```python import pydicom ds = pydicom.read_file('your_dcm_file.dcm') ``` 2. **获取像素数组**:从`PixelData`字段提取原始的灰度或RGB(对于彩色CT),转换成二维或三维数组。 ```python image_array = ds.pixel_array if image_array.ndim == 2: # 对于单层的灰度图像 elif image_array.ndim == 3: # 对于包含多层的彩色图像,通常最后一维代表颜色通道 ``` 3. **设置ROI(感兴趣区,Region of Interest)**:确定你想要测量的区域,可以是一个矩形、圆形或其他自定义形状。这通常通过索引来完成。 4. **计算平均或插CT**:对ROI内的像素应用平均或线性插等方法来获取该区域的CT。如果是多层图像,可能需要对每一层分别计算。 ```python roi_values = image_array[roi_slice, roi_row:roi_row+height, roi_col:roi_col+width].mean() ``` 这里`roi_slice`, `roi_row`, `roi_col`, `height`, `width`分别是ROI在Z轴、Y轴和X轴上的坐标范围。 5. **保存结果**:最后,你可以将测量的CT保存下来作为你需要的数据。 **相关问题--:** 1. Pydicom库如何安装? 2. 如何处理DICOM文件中的元数据信息? 3. 如果ROI跨越了多层怎么办?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值